
The Aubit4GL Manual

Editor John O’Gorman

13 December 2010

2

Contents

1 Features 21

1.1 4GL: . 21

1.2 Aubit 4GL . 21

1.3 Aubit4GL Benefits . 22

1.3.1 GNU, GPL, OpenSource 22

1.3.2 Commercial Support 22

1.3.3 Productive . 23

1.3.4 Fast . 23

1.3.5 Compatible . 23

1.3.6 Engine Independent 23

1.4 Aubit4GL Extensions . 24

1.5 What’s New . 24

2 Install 27

2.1 Platforms . 27

2.2 Choices . 27

2.2.1 GTK . 28

2.2.2 PDFLib . 29

3

CONTENTS CONTENTS

2.2.3 Which . 29
2.2.4 Whither . 29

2.3 But first . 30
2.3.1 Binary . 30
2.3.2 Source . 31

2.4 Download . 33
2.4.1 Filenames . 33
2.4.2 Tarballs . 34

2.4.2.1 CVS . 34
2.5 Build . 35

2.5.1 configure . 35
2.5.2 Binary . 36
2.5.3 Source . 36

2.5.3.1 Missing Software 37
2.6 Connect . 38

2.6.1 AUBITDIR . 38
2.6.2 PATH . 38
2.6.3 ldconfig . 38

2.7 aubitrc . 39
2.7.1 Binary . 40
2.7.2 Source . 40
2.7.3 Plugins . 40

2.7.3.1 Informix . 41
2.7.3.2 PostgreSQL 41
2.7.3.3 MySQL . 41
2.7.3.4 SQLite3 . 41
2.7.3.5 Others . 41

4

CONTENTS CONTENTS

2.7.4 A4GL_SQLACL . 41

2.8 DECIMAL format . 42

2.9 Remote connection to pg8: . 42

2.10 Check . 44

2.10.1 Commands . 44

2.10.2 Try to compile a simple 4gl hello 46

2.10.3 With database . 47

2.10.4 Test Programs . 47

2.10.5 For Informix . 48

2.10.5.0.1 Cient SDK 48

2.10.5.0.2 Check the SDK 48

2.10.5.0.3 Set Up Aubit 48

2.10.5.0.4 Try to compile a simple 4gl 48

2.10.5.0.5 Try to run it 49

3 Set up 51

3.1 ODBC . 51

3.1.1 ODBC config files . 52

3.1.1.1 Sample odbcinst.ini 52

3.1.1.2 ODBC Datasources 53

3.1.1.3 Informix ODBC Drivers 54

3.1.1.3.1 Informix Driver Manager 55

3.1.1.4 PostgreSQL Drivers 55

3.1.1.5 SAPDB Drivers 55

3.1.1.6 ODBC Warning 56

3.1.1.7 Native . 56

3.2 Databases . 57

5

CONTENTS CONTENTS

3.2.1 Informix . 57

3.2.2 PostgreSQL . 57

3.2.2.1 Overview . 57

3.2.2.2 Documentation 57

3.2.2.3 Installation 58

3.2.2.4 Instances . 59

3.2.2.4.1 initdb 59

3.2.2.4.2 pg_ctl start 60

3.2.2.4.3 pg_ctl stop 60

3.2.2.4.4 createdb 61

3.2.2.5 Environment 61

3.2.2.6 Maintenance 63

3.2.2.6.1 vacuumdb 63

3.2.2.6.2 pg_dump 63

3.2.2.7 Commands 63

3.2.2.8 psql . 64

3.2.2.9 Stored Procedures 65

3.2.2.9.1 PL/pgSQL matches function 66

3.2.2.9.2 $$ quoting 67

3.2.2.9.3 E escaping 67

3.2.2.9.4 PL/pgSQL install 67

3.2.3 MySQL . 68

3.2.4 SQLite3 . 69

3.2.5 SQLServer . 70

6

CONTENTS CONTENTS

4 Problems 73

4.1 Curses . 73

4.1.1 Wide Characters . 73

4.1.2 Encodings . 73

4.1.3 LENGTH . 76

4.2 Engines . 76

5 Modules 81

5.0.1 Choices . 81

6 Aubit4GL Compilers 87

6.1 A4GL compilers . 87

6.2 4glpc . 88

6.2.1 Usage . 88

6.3 4glc . 92

6.4 Compiling forms . 92

6.5 Compiling help files . 92

6.6 Compiling menu files . 93

7 4GL Language 95

7.1 Introduction . 95

7.2 Summary: . 96

7.3 Short Intro to x4GL . 97

7.3.1 4GL Programs . 97

7.3.1.1 Structure of a program 97

7.3.1.2 DATABASE section 98

7.3.1.3 GLOBALS section 98

7.3.1.4 Functions 98

7

CONTENTS CONTENTS

7.3.1.5 MAIN block 99
7.3.1.6 DEFINE section 99
7.3.1.7 Arrays Syntax: 100
7.3.1.8 Records . 100

7.3.1.8.1 Syntax 101
7.3.1.9 Associative Arrays 102

7.3.1.9.1 Performance Note 102
7.3.1.10 Constants . 103
7.3.1.11 DEFINE NEW TYPE 103
7.3.1.12 Packages . 104

7.4 Quick Reference . 105
7.4.1 Data Types . 105
7.4.2 Constants . 107
7.4.3 Global Variables . 107
7.4.4 Syntax Conventions 107
7.4.5 Operators . 108
7.4.6 Aubit4GL Operators 109
7.4.7 Attribute Constants 109
7.4.8 Key Constants . 109
7.4.9 Table Privileges . 110
7.4.10 Comments . 110
7.4.11 4GL Statement Syntax 110
7.4.12 Report Syntax . 123
7.4.13 Report Statement Syntax 123
7.4.14 Report Expressions . 123
7.4.15 PDF Report Syntax 124

7.4.15.1 PDF Report Expressions 125

8

CONTENTS CONTENTS

7.4.15.2 PDF Statements 125
7.4.15.3 PDF_FUNCTION arglists 126

7.5 Builtin Functions . 126
7.5.1 Standard 4GL Builtin Functions 126
7.5.2 Standard 4GL Operators 127
7.5.3 D4GL Builtin Functions 129
7.5.4 Aubit Builtin Functions 130
7.5.5 a4gl_get_info() . 130

7.5.5.1 Connection 131
7.5.5.2 Form . 131
7.5.5.3 Statement 132
7.5.5.4 Window . 132

7.5.6 aclfgl_ Builtins . 133
7.5.6.1 Procedures 133
7.5.6.2 Functions . 133

7.6 Form Syntax . 134
7.6.1 Tag Description . 135
7.6.2 Aubit 4GL GUI Attributes 136

7.7 VDC Forms . 136
7.8 Callbacks . 137

8 Help system 139
8.1 Help message source file . 139
8.2 Compiling help files . 139
8.3 help in programs . 140

8.3.1 Within 4GL . 140
8.3.2 At runtime . 140

8.4 Decompiling . 140
8.5 Compatibility . 140
8.6 mkmess . 141

9

CONTENTS CONTENTS

9 SQL Conversion 143

9.1 Source SQL dialect . 144

9.2 Target SQL dialect . 144

9.3 Configuration files . 144

9.4 Converting SQL . 145

9.5 Conversion Syntax . 146

9.5.1 Simple directives . 146

9.5.2 Complex Directives 147

9.5.3 REPLACE directives 147

10 Make 151

10.0.4 GNU make . 151

10.1 Makefiles . 152

10.1.0.1 Include File 152

10.1.0.2 Make glossary: 152

10.1.0.3 Makefile Example 153

10.1.1 Pattern Rules . 154

10.1.2 Make variables . 154

10.1.3 GPATH and VPATH 155

10.1.4 .PHONY . 155

10.1.5 Implicit rules . 155

10.1.6 Syntax . 155

10.1.7 Debugging make . 156

11 amake 157

11.1 Introduction . 157

11.2 Summary . 158

10

CONTENTS CONTENTS

11.3 Converting old makefiles . 158

11.3.1 prepmake . 158

11.3.2 example . 158

11.3.3 amakeallo . 159

11.3.4 amakeallf . 159

11.4 2. amake . 159

11.4.1 Requests . 160

11.4.2 Notes . 160

11.4.3 Installation . 161

11.4.4 Credits: . 162

11.4.5 #DEFINE . 163

11.4.6 4GL Makefiles . 163

11.4.6.1 Makefiles for Classic 4GL on Unix 163

11.4.7 D4GL Makefiles on Unix 165

11.4.7.1 I4GL Makefiles on Unix 165

11.4.7.2 NMAKE . 166

11.4.8 Bug in ESQL/C rules: 167

12 A4GL Utilities 169

12.1 adbschema . 169

12.2 afinderr . 170

12.3 asql . 170

12.3.1 runforms . 172

12.4 aupscol . 173

12.5 P-Code Dropped . 173

12.6 configurator . 173

12.7 convertsql . 174

11

CONTENTS CONTENTS

12.8 default_frm . 174

12.9 fcompile . 175

12.9.1 Builtin Forms . 175

12.10fshow . 176

12.11loadmap . 177

12.12mkpackage . 177

12.13prepmake . 177

12.14decompilers . 177

12.15Internal Apps . 178

12.15.1xgen . 178

13 Packages 179

13.1 Packages . 179

13.2 channel . 181

13.2.1 Dependencies . 181

13.2.2 Synopsis . 182

13.3 file . 182

13.3.1 Dependencies . 182

13.3.2 Synopsis . 183

13.4 html . 183

13.4.1 Dependencies . 184

13.4.2 Synopsis . 184

13.4.3 Example . 187

13.5 memcached . 189

13.5.1 Dependencies . 189

13.5.2 Synopsis . 189

13.6 pcre . 190

12

CONTENTS CONTENTS

13.6.1 Dependancies . 191

13.6.2 Synopsis . 191

13.7 pop . 191

13.7.1 Dependancies . 192

13.7.2 Synopsis . 192

13.8 smtp . 194

13.8.1 Dependancies . 194

13.8.2 Synopsis . 194

13.9 string . 195

13.9.1 Dependencies . 195

13.9.2 Synopsis . 196

13.10sxml . 196

13.10.1Dependencies . 196

13.10.2Synopsis . 197

13.11dynamic . 197

13.11.1Dependencies . 197

13.11.2Function list . 198

14 Extensions 199

14.1 Fake Comments {! ... !} . 199

14.2 Associative Arrays . 200

14.3 Paused Screen Handling . 200

14.4 Slices . 201

14.5 TODO statement . 201

14.6 ODBC Data access . 202

14.7 Concurrent Connections . 202

14.8 Constants . 202

13

CONTENTS CONTENTS

14.9 Callback Functions . 203
14.9.1 CONSTRUCT VIA 203

14.9.1.1 VIA Example 204
14.9.2 SORT ... USING sortfunc 206

14.9.2.1 Example code 207
14.9.2.2 Example 2 208

14.9.3 LOAD ... USING FILTER fname 209
14.10Error Hooks . 211

14.10.1A4GL_ERRHOOK 211
14.10.2 errlog() . 212
14.10.3Example . 212
14.10.4 sample.4gl . 213

14.11Map Files . 215
14.12New Types . 215
14.13Variable IDs . 216
14.14Passing IDs . 216
14.15Embedded C code. 216
14.16MOVE WINDOW . 218
14.17WHENEVER . 218
14.18Multilevel Menus . 218
14.19Extended DISPLAY . 218
14.20Extended USING . 218
14.21Local functions . 219
14.22get_info function . 219
14.23a4gl_get_info() . 219
14.24get_error_details() . 220
14.25Dynamic Form Fields . 220

14

CONTENTS CONTENTS

14.26Remote Functions . 221

14.27LINKED TO . 221

14.28ON ANY KEY etc . 222

14.29Compile Time Environment 222

14.30SCHEMA v DATABASE . 223

14.31SESSIONS . 224

14.32Application Partitioning . 224

14.33Y2K Runtime Translation . 225

14.34Globbing . 225

14.35A4GL Wizard . 225

14.35.1Program Templates 225

14.36PDF Reports . 225

14.37GUI . 226

14.38Packages . 226

14.39a4gl IDE . 226

14.39.1 Independent Development Environment 226

14.40Logical Reports . 226

15 ACE reports 227

15.0.1 generate_aace . 228

15.1 aace . 228

15.2 aace_4gl . 228

15.2.1 -C Compatibility . 229

15.2.2 -I Insert Cursor . 229

15.2.3 -B Batch Size . 229

15

CONTENTS CONTENTS

16 New Display Clients 231

16.1 New GUI Front Ends . 231
16.1.1 History . 231

16.1.1.1 TUI . 231
16.1.1.2 GTK . 231
16.1.1.3 HL_TUI, HL_GTK 232
16.1.1.4 Graphical Front Ends 232

16.2 VDC . 233
16.3 Requirements . 233
16.4 Ventas Display Client . 234

16.4.1 Linux . 234
16.4.1.1 Source . 234
16.4.1.2 Binary . 234

16.4.2 Windows . 234
16.4.2.1 Source . 234
16.4.2.2 Binary . 235

16.5 Proxy . 235
16.5.0.3 Authentication 236

16.6 Form Layouts . 236
16.6.1 SCREEN . 236
16.6.2 LAYOUT . 236

16.6.2.1 GRID . 237
16.6.2.2 TABLE . 237
16.6.2.3 HBOX, VBOX 238
16.6.2.4 FOLDER . 238
16.6.2.5 Container Syntax 240

16.6.3 Field Widgets . 240

16

CONTENTS CONTENTS

16.6.3.1 Widget Syntax 241

16.7 Settings/Environment Variables 242

16.7.1 Debugging . 242

16.8 Special functions . 243

16.9 Ventas GUI Client . 243

16.9.1 Startup . 244

16.10Look & Feel . 244

16.10.1Toolbars . 244

16.10.2 Images . 245

16.10.3Application Launcher 245

16.10.3.1 STYLES . 245

16.10.3.2 Attributes 246

16.10.3.3 Modifiers . 247

16.10.3.4 Actions . 247

16.10.3.5 Attributes 248

16.10.4SSH client mode . 248

16.11Other GUI clients . 248

16.12Protocol . 249

16.12.1Testing . 249

16.12.2DTDs . 251

17 PDF Reports 253

17.1 Before you start . 253

17.2 Introduction . 253

17.3 Output Section . 254

17.3.1 Fonts . 255

17.3.2 Report Structure . 255

17

CONTENTS CONTENTS

17.3.3 Extras . 256
17.3.3.1 Positioning 256
17.3.3.2 Images . 256

17.3.4 Example program . 257
17.4 Barcodes . 257

17.4.1 Barcodes 128 . 260
17.4.1.1 Tilde Method 261
17.4.1.2 Type 128B 262

17.5 Printing . 263
17.5.1 PDF . 264
17.5.2 ASCII, ISO8895, etc 264
17.5.3 CUPS . 264

17.5.3.1 Print Queue Set Up 265
17.5.3.2 cpi and lpi 266
17.5.3.3 CUPS Documentation 267

17.5.4 Print Queue Problems 267
17.5.4.1 a2ps . 268

18 Logical Reports 271
18.1 Invoking a logical report . 271

18.1.1 FINISHing the report 271
18.1.2 Converting to "filename" 272
18.1.3 Default layouts . 272
18.1.4 Converting to many 273

18.2 Saved Meta Data . 274
18.2.1 The Report Viewer . 274
18.2.2 The layout editor . 275
18.2.3 The report processor 276
18.2.4 Tips for CSV layouts 276

18.3 Helper programs . 277

18

CONTENTS CONTENTS

19 Debugging 279
19.1 Coredumps . 279
19.2 Unexpected behaviour . 280
19.3 All other errors . 280
19.4 compiler errors . 280
19.5 Reporting bugs . 280

20 Web Services 281
20.1 4GL Web Tools . 281

20.1.1 Client . 282
20.1.2 Server . 282

20.2 WSDL and SOAP . 282
20.3 gSOAP . 283

20.3.1 Warning . 284
20.4 wsdl2fgl . 284

20.4.1 Client Example . 285
20.4.2 Web Server . 286
20.4.3 Limitations . 291

20.4.3.1 Single Threaded 291
20.4.3.2 Limited Datatypes 291
20.4.3.3 Unsupported Services 292

21 Revisions 293
21.1 2010-8-23 . 293
21.2 2006-8-1 . 293
21.3 2005-9-9 . 294
21.4 2005-3-12 . 294
21.5 2004-4-27 . 294
21.6 2004-2-22 . 295
21.7 Problems . 295

19

CONTENTS CONTENTS

22 Environment Variables 297

22.0.1 Version 1.2 . 315

23 This Manual 329

23.1 LYX . 329

23.2 TEX . 330

23.3 LATEX . 330

23.4 PDF and HTML . 331

23.4.1 PDF . 331

23.4.2 HTML . 332

23.4.2.1 Export LYX to TEX 333

23.4.2.2 Convert TEX to HTML 333

23.4.3 Makefile . 334

20

Chapter 1

Features

1.1 4GL:

Informix 4GL was co-designed by Roger Sippl (founder of Informix) and
Chris Maloney. They combined the elements of Perform (the screen package
designed by Betty Chang), Ace (the report writer written by Bill Hedge),
and the SQL engine written by Roy Harrington into a Pascal-like language
which Informix released in 1986 - the same year that the first ANSI standard
for SQL was promulgated.

Informix 4GL complied with the SQL86 standard. I4GL was phenominally
successful in the marketplace. More applications were written in I4GL in
the 1990s than in any other language.

1.2 Aubit 4GL

Aubit 4GL is a free opensource work-alike for Informix 4GL. The project
was started by Mike Aubury of Aubit Computing Ltd, who continues to
contribute most to it. A number of other contributors have included Andrej
Falout, John O’Gorman, Sergio Ferreira, Walter Haslbeck. Recently, other
companies have joined the Aubit4GL brotherhood with the intention of
contributing to the development of independent graphical frontends.

21

1.3. AUBIT4GL BENEFITS CHAPTER 1. FEATURES

Where Informix 4GL was locked into working only with Informix’s own
database engines: SE and IDS, Aubit 4GL can work with any SQL compli-
ant engine. Currently supported engines are Informix SE and IDS, Postgr-
eSQL, SAPDB, mysql, SQLite3, and using ODBC (unixODBC or iODBC
on Linux/Unix) any other engine for which ODBC interfaces exist.

1.3 Aubit4GL Benefits

1.3.1 GNU, GPL, OpenSource

Aubit4GL is free and opensource. It will cost you nothing, but there are
much more important implications that this, in our view. Its future does not
depend on anyone but you. To find out more about implications of this fea-
ture, please see http://www.opensource.org and http://www.gnu.org.

1.3.2 Commercial Support

Commercial support is available from Aubit Computing Ltd if you want
it. Aubit Computing Ltd is Mike Aubury’s company. Aubit has developed
some important new debugging tools: fgllint and fglcalltree which assist
professional developers to find bugs in any 4GL source code. These tools
are not GPLed but can be purchased from Aubit Computing Ltd.

This will guarantee you can use Aubit4GL in business-critical situations
with confidence, and bring together the best of both worlds. To learn more,
visit http://www.aubit.com.

Support is now also available from:

• Moredata http://www.moredata.eu for Portuguese and Spanish speak-
ers

• Ventas http://www.ventas.de for German speakers. Ventas are de-
veloping the new VDC graphic frontend for Aubit4GL

22

http://www.opensource.org
http://www.gnu.org
http://www.aubit.com
http://www.moredata.eu
http://www.ventas.de

CHAPTER 1. FEATURES 1.3. AUBIT4GL BENEFITS

1.3.3 Productive

Based on a robust, mature, stable, efficient, and productive language, x4GL
is dedicated to writing business-related, database oriented applications, and
this is what it does, in our opinion, best in the world.
It is easy to learn, implement, and maintain. And most of all, it is at least
3 times more productive in all aspect of the software lifecycle than third
generation languages like C, and at least twice as productive as the best
component development environments.

1.3.4 Fast

It’s FAST! Full n tier deployment, native C code generation compiled by
optimized C compilers bring together the advantages of a high-level, human-
like development language, and low-level machine-code runtime execution
performance. Not to mention that you can interpolate C code directly into
4GL code!

1.3.5 Compatible

Aubit4GL is compatible with a number of commercial products giving you
the freedom to mix and match features and environments based on any
particular situation. You will not be locked into one compiler, one company,
or one database. You can develop with commercial products, deploy with
Aubit 4GL, and save on runtime licensing, at the same time gaining the
speed of a C compiled runtime. Or you can use 4GL Wizard functionality
and templates in development, and deploy using a commercial runtime that
supports client side functionality that is not present in Aubit 4GL at the
moment.

1.3.6 Engine Independent

Database, OS, platform, and user interface independent ODBC means that
choosing a database engine is no longer an issue.
You can develop and deploy wherever a GCC compiler is available with a
single recompile. And because of full n-tier support, you can use TUI, GUI

23

1.4. AUBIT4GL EXTENSIONS CHAPTER 1. FEATURES

and Web interfaces from the same code, and the same compiler program, at
the same time, just by setting environment variables. Informix 4GL already
has a big developer base, and a large existing applications base.

This is not a new language, just a new implementation of a mature and
successful language. So you will not need to look hard to find developers for
your projects. And since 4GL is English-like in syntax, programmers with
experience in any language will be productive in just a few days. On top
of that, you will not need to look far to find commercial, tried and tested
applications in any field of business oriented database applications.

1.4 Aubit4GL Extensions

A4GL fully supports the features and syntax of Informix 4GL, but we have
extended the language with many enhancements to increase the productiv-
ity of the 4GL developer. These enhancements are fully described in the
Aubit4GL Extensions chapter of this manual.

1.5 What’s New

Since version 1.10, we have added a lot of things to Aubit4GL. These include:

• A new TODO ... END TODO construction similar to CASE ... END
CASE but which iterates until all its WHEN branches are satisfied

• A new SORT arrayvar USING sortfunc statement which will sort an
array for you using your supplied callback function sortfunc to order
successive elements.

• Extensions to the CONSTRUCT, SORT, and LOAD statements to
allow use of a callback function

• DEFINE NEW TYPE id definition

• New event catchers for INPUT/DISPLAY/CONSTRUCT statements
e.g.

– ON CHANGE field

24

CHAPTER 1. FEATURES 1.5. WHAT’S NEW

– ON ANY KEY
– ON IDLE | INTERVAL n HOURS | MINUTES | SECONDS

• The ability to use error hooks (i.e. calls to a user supplied error
function)

• Extensions to the PDFREPORT to support

– More 4GL statements for setting font properties, etc
– Support for more barcode formats

• Myriad more environment vars to control lots of things

• INPUT/DISPLAY ARRAY arrname SLICE [field1 THRU fieldn]

• A COPYOF operator and its complement COPYBACK which allow
efficient bulk passing of function parameters using memcpy() rather
than tedious pushing and popping to and from the 4GL function call
stack. This is mainly for the benefit of the new SORT statement.

• Some tools (fglproto, wsdl2fgl) to assist in using Aubit4GL to supply
and/or use web services

• A new XML interface to allow independent Visual Display applications
to communicate with Aubit4GL backends.

• IGNORE ERROR(n [, ..]) for 4glstatement

• USE IGNORE ERROR FOR 4glstatement

• REMAP ERROR -n=-m

• Many new Aubit4GL builtin functions.

25

1.5. WHAT’S NEW CHAPTER 1. FEATURES

26

Chapter 2

Install

2.1 Platforms

You can install Aubit4GL on recent versions of

• Linux (e.g Redhat, openSUSE, Ubuntu, and the like)

• Unix operating systems

• Apple Mac OSX

• Microsoft Windows with or without Cygwin.

2.2 Choices

Whereas Informix4GL works only with Informix databases, Aubit4GL can
work with

• Native database connections also for PostgreSQL, SAPDB, Mysql, or
SQLite3

• Vendor ODBC packages for Informix, PostgreSQL, MySQL, and SQL-
ite3

27

2.2. CHOICES CHAPTER 2. INSTALL

• Independent ODBC manager libraries for database connection: unix-
ODBC, iODBC (or Windows ODBC)

• PDF library for fancy reports using PDFLite from www.pdf.org

• GTK2+ Library (for grapical frontend)

• Jabber IM library (for instant messaging) using the iksemel package

• SUN RPC package (for n-tier applications using Remote Procedure
Calls)

• RPC-XML libraries (for communicating with XML format files)

• Perl interpreter

• SWIG libraries (for Perl output instead of C)

• different dialects of SQL: Informix or Postgres

• XML for working with independent Visual Display Clients

They will be discovered and linked by the autoconfig configure script when
you install Aubit4GL. This versatility forces you to have to make a number
of choices. It is rather like buying an icecream in the US. You don’t get
anything till you have made a series of choices...

2.2.1 GTK

Aubit4GL has the ability to:

• display normal screen statements using Graphical Display widgets.

• support a set of extensions to the language to interface with Graphical
objects such as Checkboxes, Pulldowns, Buttons, etc.

To exploit the graphical capabilities of Aubit4GL, you need the GNOME
GTK2 (Graphical Tool Kit) development library available at installation
and run time. The GTK capabilities of Aubit4GL are now being surplanted
by new Display Clients documented elsewhere in this manual. Given that
there will be no further development of the GTK interface, you are advised
not to use it.

28

www.pdf.org

CHAPTER 2. INSTALL 2.2. CHOICES

2.2.2 PDFLib

An extension to the 4GL language allows Abit4GL to exploit a PDF (Port-
able Data Format) library to produce fancy reports. This is an optional
feature and if unavailable when you build the Aubit4GL compiler, a library
of do-nothing dummy PDF functions will be built-in to the compiler.

To get the PDFLib library go to the site: www.pdflib.org

Get the PDF-Lite version which is free for non-commercial use.

When you have downloaded it and installed, you will need to make the
directory which contains the file: pdflib.so available to the linker program
ld. Either put the path to pdflib.so in a file
/etc/ld.so.conf.d/aubit.conf and as root run the command:
ldconfig -v
or add the directory to the environment variable LD_LIBRARY_PATH.

2.2.3 Which

Aubit4GL is available in two forms:

• Binary tarballs

• Source tarballs or CVS

2.2.4 Whither

Traditionally Linux systems expected you to install extra software in /opt or
/usr/local. Times and practices have changed. It is better to create a sep-
arate disc partition (or slice in Unix parlance) for software that comes from
outside the OS distribution. For Aubit4GL you need at least 300MB. Mount
this partition on one of the following recommended directories. When you
upgrade or reinstal the OS, you can unmount the partition, do the upgrade
or reinstall, then mount the partition again and you will not have lost any
of the Aubit4GL files.

We recommend that you download Aubit4GL to one of the following (in the
author’s order of preference):

29

2.3. BUT FIRST CHAPTER 2. INSTALL

• /local/opt

• /local

• /app

Avoid the traditional /usr and /opt as these are populated by Linux distri-
butions and can get lost and overwritten on update or re-installation. Many
opensource applications install by default into /usr/local. If you going to
follow the advice above, and install into /local, run configure as follows:

./configure --prefix=/local

2.3 But first

2.3.1 Binary

Before you install Aubit4GL you may need to have installed other software

• ncurses 1.78 or later (and maybe ncurses-wide if you are using UTF-8
or other multibyte characters). Get this from your OS distribution.

• pdflib (if you intend to expoit PDFREPORTs). You will get this from
pdflib.

• GTK2 (if you want to use the (discontinued) alternative graphic fron-
tend). Get this from your OS distribution.

• ESQLC or ODBC for your database engine(s) unless using Postgr-
eSQL

• Ventas Display Client (if you want to use a graphic frontend). Get
this from ventas.de

• gSOAP (if you want to write web services). Get this from ???

• perl (if you want to use aace_perl, etc). Get this from your OS dis-
tribution

30

CHAPTER 2. INSTALL 2.3. BUT FIRST

2.3.2 Source

The above will likely suffice for the binary installation.

But if you want to download Aubit4GL source and build it on your platform,
because it is built in C, you will need the following as well:

• GNU C compiler: gcc and its prerequisites e.g.: GNU make

• autoconf tools

• bison, flex, m4

• glibc2

• gdb, valgrind

• cvs, svn, and their prerequisites

• curl

You should get any development packages associated with these prerequis-
ites. (They usually have a suffix -dev or -devel). These will provide among
other things the necessary .h files. If you are a software developer you have
probably installed these already.

How you get these and install them varies with different distributions. If
your OS distribution has packages for your version of the OS, then use those
in preference to downloading and compiling from source.

• openSUSE.

– Use GUI Yast2 to search and install
or from the command line:

– zypper search packagename
then

– zypper install package

• Ubuntu (or other Debian derived systems)

– Use GUI aptitude or synaptic and search
or from the command line:

31

2.3. BUT FIRST CHAPTER 2. INSTALL

– apt-cache search packagename
then

– apt-get install package

The above will all install any prerequisite packages in addition to your
chosen application.

For applications like pdflib which do not come packaged with the OS dis-
tribution, installation will vary but you will expect to install most of them
by

• pointing a browser at the site (e.g. www.pdflib.org)

• find the download file you want

• right-click on the file to download it.

• mv the file to your chosen directory (e.g. /local/opt/pdflib)

• cd to the above directory

• extract the files from the download tarball. e.g.:
tar xvfz appname-1.17-34.tar.gz

• cd to the directory extracted. e.g.
cd appname-1.17-34

• find any README and/or INSTALL file and follow the instructions.
They are usually something like

– ./configure

– make

– make test

– make install (as root)

– configure as necessary PATH, LD_LIBRARY_PATH etc

32

CHAPTER 2. INSTALL 2.4. DOWNLOAD

2.4 Download

Installation should be possible on most Linux distributions, and with some
tweaking on most Unix, Max OSX, and Windows machines too.

There are several possible sources for download

• MARS Binary releases (www.aubit.com/aubit4gl)

• MARS Source releases (www.aubit.com/aubit4gl/src)

• Nightly builds
http://aubit4gl.sourceforge.net/files/aubitdownload.htm

• CVS
http://sourceforge.net/cvs/?group_id=32409

2.4.1 Filenames

Download files are tarballs. We name them as follows:

Binary aubit4glbin-i686-pc-linux-gnu-1.2-14.tgz

Source aubit4glsrc.1.2.14.tar.gz

The 1.2-14 is the version of Aubit4GL. The other stuff i686-pc-linux-gnu
identifies the CPU architexture, OS, and libraries where the binary was
built.

Binaries need to have been made on a system similar to yours. The above
example works for openSUSE and other linux distros. You may need to
look in subdirectories (e.g. ubunt/hardy, win32, etc) to find a match for
your setup.

There is one common source file for all target distributions, hence the sim-
pler names.

33

http://http:www.aubit.com/aubit4g
http://http:www.aubit.com/aubit4g/src
http://aubit4gl.sourceforge.net/files/aubitdownload.htm
http://sourceforge.net/cvs/?group_id=32409

2.4. DOWNLOAD CHAPTER 2. INSTALL

2.4.2 Tarballs

Tar means tape archive. Tarballs are created by bundling a whole directory
structure into a single file for storage on tape or any other medium. They
are usually compressed with gzip and given the suffix .tar.gz or .tgz
Before downloading save copies of critical config files (if you have them
already). e.g.: $AUBITDIR/etc/aubitrc
Download is as described in the PDFLIB section above: point a browser
at the filename and right-click. Experts can do it from the command line
using the wget or curl commands.
Extract from the tarball:

export AUBITDIR=/local/opt/aubit4glbin
cd $AUBITDIR
tar xvfz /path/to/tarball

2.4.2.1 CVS

You can get the bleeding edge current version of Aubit4GL source from the
CVS (Concurrent Versions System). To do this:

1. cd $SRCDIR

2. Set an environment variable CVSROOT to:
:pserver:anonymous@cvs.sourceforge.net:/cvsroot/aubit4gl

3. Login to the aubit cvs pserver
cvs login
When it prompts for a password, just hit RETURN.

4. Checkout the module you want: aubit4glsrc or aubit4gldoc
cvs -z3 co aubit4glsrc

Be warned that from time to time the cvs version may be broken. Develop-
ment is ongoing and you cannot make an omelet without breaking eggs.
Note: Put the CVSROOT value in a file called (say) AUBITCVSROOT.
Then whenever you wish to checkout or update from cvs, you can set CVS-
ROOT using the command
$export CVSROOT=$(cat AUBITCVSROOT)

34

CHAPTER 2. INSTALL 2.5. BUILD

The above works for ksh and bash. If your shell does not accept the $(...)
syntax, then use backticks instead:
$CVSROOT=‘cat AUBITCVSROOT‘ export CVSROOT

2.5 Build

2.5.1 configure

After unpacking a tarball or updating an existing source application from
CVS, you can change to the install directory and run the configure script.
Part of the autoconf tools suite of tools, the configure program is crucial to
installing many applications and seeks out existing installed products and
does what is necessary to link them to your target application. For both
binary and source installations you should run autoconf to check that Au-
bit4GL will find all its sister libraries. Some useful command line examples:

./configure --help

./configure --prefix=/local

./configure ... > config.out

./confgure --with-pdf=/local

Whenever you run ./configure it writes to config.log. This is a very verbose
(more than 7000 lines) log of all its actions and it can give you a precise
indication of what it is doing to find each component.
When you redirect output to config.out, you get a 500 lines or so resume of
lost and found elements. e.g.:

checking for main in -liksemel... yes
checking if we can use IksEmEl... yes
...
checking for main in -lsxml... no
checking sxml.h usability... no
checking sxml.h presence... no
checking for sxml.h... no
checking if we can use SXML... no

Use these file to determine if Aubit4GL is finding all the installed elements
you expect it to find.

35

2.5. BUILD CHAPTER 2. INSTALL

2.5.2 Binary

Nothing to do!

Mike has already done the hard work for you. If you are lucky and yours
is the same distribution as his then the system libraries will have the same
names. Otherwise, you will either have to create synonyms for them or
abandon the binary and install the source instead.

2.5.3 Source

Having downloaded the source, whether from a tarball or via cvs

• cd /local/opt/aubit4glsrc

• Read the file README.txt

• Run the configure command:
./configure --prefix=/local/opt/aubit4glsrc

– This will search for all the prerequisites and options and build
Makefiles appropriately

– The configure script will report all the prerequisites and options
it finds and report any missing elements. If there are prerequisites
missing or in non-standard locations, you can deal with this and
run configure again.

– If the above failed where you expected it to succeed, figure out
why, fix it, and try configure again.

• If configure seems OK then run the make command:
make

• There are other arguments to make which may be useful to you, es-
pecially if things go wrong and you have to alter your setup (e.g. by
installing some missing optional software):
make cleanall
make log
The cleanall target will undo the effects of a previous make.

36

CHAPTER 2. INSTALL 2.5. BUILD

The log target will save all the output from make into a file make.log
which you can email to the aubit email lists when you want help with
an install problem.

• You will know the make succeeded if you see a message like the fol-
lowing
Aubit4GL compiled successfully

2.5.3.1 Missing Software

Run the configure script to see which of these you have (or don’t have) in
config.log:

./configure --prefix=/local/opt/aubit4gl > config.out

Look in config.out or in config.log (for more verbosity) for what configure
found and missed. Don’t be too concerned if there are many things missed.
e.g. you need at most one ODBC (on Linux: unix-odbc or iodbc). Similarly
you will likely not need an ESQLC application for postgreSQL or SQLite3
or MySQL.

When config.out or config.log shows that you are missing something that
you want, e.g. Jabber you will see what configure is looking for (in the case
of Jabber: iksemel). Use your OS packet management software to search
for and install the missing application and then run ./configure again.

On Linux systems the command rpm -qa will give you a (huge) list of all
software installed using rpm (RedHat Package Manager). To find any rpms
related to iksemel run the the following:
rpm -qa | grep -i iksemel
iksemel-1.3-0
iksemel-devel-1.3-0

On Linux systems you can find non rpm installed software with the locate
command:e.g.
locate pdf

37

2.6. CONNECT CHAPTER 2. INSTALL

2.6 Connect

Now that you have Aubit4GL built on your system, whether form source
or binary, you need to tell the operating system where to find everything.
This amounts to

2.6.1 AUBITDIR

set AUBITDIR to the directory where installed Aubit4GL e.g.:

export AUBITDIR=/local/opt/aubit4glbin

2.6.2 PATH

set PATH to include the $AUBITDIR/bin e.g.:

export PATH=$PATH:$AUBITDIR/bin

2.6.3 ldconfig

Tell the linker ld where to find the Aubit4GL library files. This is done in
one of two ways:

Either create a file: aubit.conf in /etc/ld.so.conf

Sample contents:

/local/opt/aubit4glbin/lib
/local/opt/aubit4glbin/plugins-1.2_14
/local/opt/PDFlib-Lite-7.03/libs/pdflib/.lib

and run the command (as root):

ldconfig -v

38

CHAPTER 2. INSTALL 2.7. AUBITRC

or add the above directories to LD_LIBRARY_PATH

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$AUBITDIR/lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$AUBITDIR/plugins-1.2_14

mypdflib=/local/opt/PDFlib-Lite-7.03/libs/pdflib/.lib

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$mypdflib/lib

Of course, replace my example above with values appropriate to your in-
stallation.

2.7 aubitrc

All Aubit4GL compilers read their configuration files in this order:

1. /etc/opt/aubit4gl/aubitrc (only if you run: make install)

2. $AUBITDIR/etc/aubitrc

3. ~/.aubit4gl/aubitrc

4. ./.aubitrc

5. $A4GL_INIFILE

Values in later files override those already set in earlier files. The aubitrc
file in $AUBITDIR/etc is based on aubitrc.in and is edited to appropriate
values by the configure program. To see what your current settings are run
the command:

aubit-config -a

• aubit-configA4GL_SQLTYPE will show you what A4GL_SQLTYPE
is currently set as

• aubit-config -a with show you the value of all Aubit4GL settings

• aubit-config -ae will show all the above as export VARIABLE=value
(which is useful for generating aubitrc files)

39

2.7. AUBITRC CHAPTER 2. INSTALL

You can edit these files with a text edit program such as vi(m) or (x)emacs
or you can choose to use one of the programs that Aubit4GL supplies:

• quickguide.4ae

• configurator

quickguide is new with version 1.20 and is now the preferred method to set
the environment.

2.7.1 Binary

The file $AUBITDIR/etc/aubitrc will be the one set up when Mike Aubury
created the binary tarball. It will almost always be wrong for your setup.
Change it. Whenever you install a binary make sure you have saved your
aubitrc beforehand (e.g. in /local/etc/aubitrc or as oaubitrc in $AUBIT-
DIR/etc) and then selectively reassert your entries from your saved aubitrc
into the newly installed one. Run the diff command on the old and new
and look for differences in settings. (The new one my have extra settings
which you should add to the old aubitrc.

2.7.2 Source

Your new aubitrc will be built by merging a file aubitrc.in with settings the
configure found. It should be close to what you want apart from things
where you have a multiple choice (e.g. postgresql or sqlite3)

2.7.3 Plugins

Aubit4GL uses an abstraction layer for many of its functions. This means
that the way Aubit4GL works can be controlled very tightly by the setting
of various variables. These variables specify which plugins will be loaded
by the compiler and/or 4GL program. At this stage you need only concern
yourself with SQLTYPE and LEXTYPE. The defaults for all the other
plugins will be appropriate.

40

CHAPTER 2. INSTALL 2.7. AUBITRC

2.7.3.1 Informix

export A4GL_SQLTYPE=esql
export A4GL_LEXTYPE=EC

2.7.3.2 PostgreSQL

export A4GL_SQLTYPE=pg8
export A4GL_LEXTYPE=C

2.7.3.3 MySQL

export A4GL_SQLTYPE=mysql
export A4GL_LEXTYPE=C

2.7.3.4 SQLite3

export A4GL_SQLTYPE=sqlite3
export A4GL_LEXTYPE=C
export DBPATH=$DBPATH:/path/to/sqlite3database

2.7.3.5 Others

The others will need ODBC and esqlc

export A4GL_SQLTYPE=iodbc
export A4GL_LEXTYPE=EC

2.7.4 A4GL_SQLACL

To configure all your access to databases you should populate an ACL file.
By default this is:

$HOME/.aubit4gl.acl

But you can set up an alternative one and set environment variable
export A4GL_SQLACL=/path/to/file
instead.

41

2.8. DECIMAL FORMAT CHAPTER 2. INSTALL

The ACL file should contain lines with 3 fields:

dbname:username:password

The password should be in plain text but will be automatically encrypted
(albeit with a somewhat weak encryption) the first time the file is read. If
there is an entry in this file with the database name at the top of the 4gl
file, Aubit4GL should use that username and password for the connection.

You can also assign username and password to the SQLUID and SQLPWD
environment variables.

For PostgreSQL, if it is just the port you want to change - you could set
PG_PORT instead.

For PostgreSQL you can set PG_HOST to a hostname. e.g.:
export PG_HOST=myhost

2.8 DECIMAL format

To use continental formatting for decimal and numeric data: e.g. 200,12
where English uses 200.12, set the following:

A4GL_ALLOWCOMMAINDECIMAL=Y
A4GL_NUMERIC=,.
LANG=it_IT.UTF-8

The example is Italian. Set LANG appropriately for your country.

Similarly you can set:

A4GL_DB_NUMERIC

A4GL_SCANF_NUMERIC

See the chapter on Environment Variables.

2.9 Remote connection to pg8:

If you’re using the PG8 connector - then you can use any of :

42

CHAPTER 2. INSTALL 2.9. REMOTE CONNECTION TO PG8:

PG_DBPATH
PG_PORT
PG_HOST

Syntax :

export PG_DBPATH=dbname[@server][:port]
export PG_PORT=1234
export PG_HOST=tstserv

If PostgreSQL is running on a remote machine, make sure you configure it
with TCP/IP enabled. (If using ECPG, you’ll need to check how to change
the target host for that, but its normally PG_DBPATH)

• Specify the username and password by setting environment variables:
A4GL_SQLUID
and

• A4GL_SQLPWD.

These can be read from the aubitrc file if you prefer (by default $HOME/.aubit4gl/aubitrc)

If you want a different username/password depending on the database you’re
connecting to, then you can use the Aubit4GL ACL file. The filename can
be set explicitly in $A4GL_SQLACL setting. If that variable isn’t set, it will
be read from $HOME/.aubit4gl.acl and if that doesn’t exist, it will try
/etc/aubit4gl.acl

(On windows, it reads $AUBITDIR/etc/aubit4gl.acl, if that doesn’t exist,
it tries c:/aubit4gl/aubit4gl.acl)

The ACL file has the following format :

dbname:username:password

Put the password in plain text - the first time the file is read, the password
will be encrypted. (This isn’t a particularly secure encryption, but it is
better than nothing!)

43

2.10. CHECK CHAPTER 2. INSTALL

2.10 Check

2.10.1 Commands

The following commands should be created in $AUBITDIR/bin:

4glc
4GL_metrics.cgi
4glpc
a4gl
a4gl.4ae
a4glc
a4glpc
aace
aace_4gl
aace_perl
aace_runner
adbaccess
adbload2
adbschema
adecompile
afinderr
amake
amkmessage
aperform
asql_g.4ae
asql_i.4ae
asql_p.4ae
aubit
aubit-config
aupscol
c2pcode
c2pcode_fgl
checker
checker_fgl
configurator
convertsql
default_frm

44

CHAPTER 2. INSTALL 2.10. CHECK

ecpg_wrap
fcompile
fdecompile
fshow
generate_aace
genmake
ide1.4ae
layout_engine
link_fgl
loadmap
mcompile
mdecompile
odbctest-iodbc3
odbctest-unixODBC
prepmake
process_report
quick_check_logrep
report_viewer
runforms.4ae
runner
runner_fgl
runner_fgl_wrapper
shtool
sql_parse
unmkmessage

The aace_perl program will not work unless you

make install

or

copy the files report.pm and using.pm from
$AUBITDIR/compilers/ace/perl_runner
to where perl will find it.

To find where perl looks, run the command:

perl -e ’print "@INC";’

45

2.10. CHECK CHAPTER 2. INSTALL

This will output a space separated list of directories. If you want each
directory on a separate line, assign \n to the perl print output separator
variable $" as follows:

perl -e ’$"="\n"; print "@INC";’

Depending on the version of perl the output might look like this:

/usr/lib/perl5/5.10.0/i586-linux-thread-multi
/usr/lib/perl5/5.10.0
/usr/lib/perl5/site_perl/5.10.0/i586-linux-thread-multi
/usr/lib/perl5/site_perl/5.10.0
/usr/lib/perl5/vendor_perl/5.10.0/i586-linux-thread-multi
/usr/lib/perl5/vendor_perl/5.10.0
/usr/lib/perl5/vendor_perl
.

To install, copy the file into one of these directories. e.g.:

su
cd $AUBITDIR/compilers/ace/perl_runner
cp report.pm using.pm /usr/lib/perl5/site_perl/5.10.0

2.10.2 Try to compile a simple 4gl hello
MAIN
DISPLAY "Hello World"

END MAIN

4glpc simple.4gl -o simple

Try to run it:

./simple

46

CHAPTER 2. INSTALL 2.10. CHECK

2.10.3 With database

Set up a database. This example for PostgreSQL:

export A4GL_SQLTYPE=pg8
export A4GL_LEXTYPE=C
createdb mydb
DATABASE mydb
MAIN
DISPLAY "Hello World"

END MAIN

4glpc simpledb.4gl -o simpledb

Try to run it:

./simpledb

This assumes that you have an instance of PostgreSQL running. If not, read
the Databases chapter, set up the instance, start it, and try the program
again.

2.10.4 Test Programs

If both the above tests worked, congratulations!

For a more vigorous test:

cd $AUBITDIR/tools/test
make
./hello.4ae
./hello2.4ae
./hello_db.4ae

If all these programs work then you have almost certainly successfully in-
stalled at the basic Aubit4GL functionality.

47

2.10. CHECK CHAPTER 2. INSTALL

2.10.5 For Informix

2.10.5.0.1 Cient SDK To use Aubit4GL with Informix engines, you
need the Informix Client Software Kit which is free but only available if you
have a validly licensed Informix engine.
Configure the CSDK (normally the $INFORMIXDIR/etc/sqlhosts etc)

2.10.5.0.2 Check the SDK Try a simple esql/c program like :

main() {
$whenever error stop;
$database mydb;

}
$ esql somefile.ec -o somefile
$./somefile

Compile and run it. If doesn’t this is an Informix setup problem. Check
out why.
Most likely : .rhosts/hosts.equiv is not set up properly, user doesn’t
exist on the remote machine, /etc/services isn’t set up, /etc/hosts isn’t
set up, or a remote server isn’t allowing tcp connections only shared memory
ones.

2.10.5.0.3 Set Up Aubit Check that you have a
$AUBITDIR/lib/plugins-1.2_14/libSQL_esql.so

export AUBITDIR=/local/opt/aubit4glsrc
export A4GL_SQLTYPE=esql
export A4GL_LEXTYPE=EC

2.10.5.0.4 Try to compile a simple 4gl

database mydb
main
display "Hello World"

end main

4glpc simple.4gl -o simple.4ae

48

CHAPTER 2. INSTALL 2.10. CHECK

2.10.5.0.5 Try to run it Try to run that simple.4ae

49

2.10. CHECK CHAPTER 2. INSTALL

50

Chapter 3

Set up

This chapter deals with setting up not Aubit4GL but the things that Au-
bit4GL uses such as ODBC, database engines, etc.

3.1 ODBC

ODBC (Open Database Connectivity) is an X/Open and ANSI stand-
ard CLI (Call Level Interface) for communicating with database backends
through a common library called a Driver Manager which in turn uses an-
other library (called a driver) appropriate to the backend desired. All ODBC
libraries implement common functions (an API or Application Program-
ming Interface) with the details of the functions tailored to the particular
backend,
ODBC comes in two broad categories:

1. Driver Managers (e.g. unixODBC, iODBC, Windows ODBC) which
act as a go-between and can plug in vendors’ drivers

2. Direct (e.g. Informix, PostgreSQL, SAPDB, SQLite) which link dir-
ectly to the vendors’ drivers

Aubit4GL can handle embedded SQL with a library of ODBC (Open Data-
base Connectivity) functions intended for passing to an implementation of

51

3.1. ODBC CHAPTER 3. SET UP

ODBC. You need to install the ODBC application as well as the database
vendor’s odbc library files. (These latter may or may not come with the
ODBC application).

On Unix/Linux platforms the ODBC options supported are

• unixodbc a free opensource ODBC manager with a supplied SQL fron-
tend (good for testing the database). See www.unixodbc.org

• iodbc an ODBC manager from OpenLink, commercial but free to use.
See www.iodbc.org

• ifxodbc direct ODBC to Informix engines (using libraries from Infor-
mix CSDK)

• pgodbc direct ODBC to PostgreSQL engines (free opensource). Not
really needed now.

• sapodbc direct ODBC with SAPDB (a free opensource Database En-
gine up till version 7.3)

3.1.1 ODBC config files

ODBC configuration is held in files: /etc/odbcinst.ini (driver info) and
/etc/odbc.ini (datasources). Each user may have his own configuration in
~/.odbc.ini (where ~ means the user’s home directory). Applications often
supply nice GUI applications to simplify editing these files. Unfortunately
implementation of ODBC is so inconsistent between database suppliers, that
these GUIs are useless. Use vi and edit the files by hand. Then observe the
notes for each vendor and copy or link the files appropriately.

3.1.1.1 Sample odbcinst.ini

The file odbcinst.ini holds a list of ODBC drivers. An example:

[Informix]
Driver=/opt/informix/lib/cli/libifcli.so
Setup=/opt/informix/lib/cli/libifcli.so
APILevel=1

52

CHAPTER 3. SET UP 3.1. ODBC

ConnectFunctions=YYY
DriverODBCVer=03.00
FileUsage=0
SQLLevel=1
smProcessPerConnect=Y

[PostgreSQL]
Driver=/usr/lib/libodbcpsql.so
Setup=/usr/lbi/libodbcpsqlS.so
FileUsage=1
Threading=2

[SAPDB]
Driver=/opt/sapdb/interfaces/odbc/lib/libsqlod.so
Setup=/usr/lib/libsapdbS.so
FileUsage=1
CPTimeout=
CPReuse=

The Informix drivers will not tolerate whitespace (blanks or tabs) in the
above file.

3.1.1.2 ODBC Datasources

Access to ODBC databases is configured in odbc.ini files which contain all
the information required by the vendor’s drivers to allow a connection. For
example:

[infstores]
Description=Informixstores demo database
Driver=/opt/informix/lib/libifcli.so
Database=stores7
LogonID=fred
pwd=zxcv132
ServerName=elvis
CLIENT_LOCALE=en_us.8859-1
TRANSLATIONDLL=/opt/informix/lib/esql/igo4a304.so
[pgstores]

53

3.1. ODBC CHAPTER 3. SET UP

Description=Postgres stores demo database
Driver=PostgreSQL
Trace=Yes
Tracefile=sql.log
Database=pgstores
Servername=localhost
UserName=
Password=
Port=5432
Protocol=6.4
ReadOnly=No
RowVersioning=No
ShowSystemTables=No
ShowOidColumn=No
FakeOidIndex=No
ConSettings=
[SAPstores]
Description=SAP stores demo database
Driver=SAPDB
ServerNode=elvis
ServerDB=stores

In principle, the Server property should be the name from the odbcinst.ini
list of drivers, but the Informix driver needs the full path to the driver
library file.
The Informix driver will not find the /etc/odbc.ini file unless you point to
it with the environment variable: ODBCINI

export ODBCINI=/etc/odbc.ini

Note that the different vendors use different keywords for naming the same
things, and they have different sets of properties.

3.1.1.3 Informix ODBC Drivers

Informix give a choice of 4 ODBC drivers. They are installed in $INFOR-
MIXDIR/lib/cli (usually /opt/informix/lib/cli on Linux systems). There

54

CHAPTER 3. SET UP 3.1. ODBC

appear to be 7 files but 3 of them are links to other files. Informix does not
use separate files for setup; each library file contains both driver and driver
setup functions.

Static Dynamic
Threaded libthcli.a libthcli.so or oclit09b.so

Unthreaded libcli.a or libifcli.a libifcli.so or iclis09b.so

3.1.1.3.1 Informix Driver Manager Informix supplies a driver man-
ager replacement (DMR) file with 2 links:
libifdmr.so
idmrs09a.so

3.1.1.4 PostgreSQL Drivers

PostgreSQL ODBC drivers are installed by default in /usr/lib
Static Dynamic

driver libodbcpsql.a libodbcpsqlso
driver setup libodbcpsqlS.a libodbcpsqlS.so

Note that there is a separate file Postgres driver setup.

3.1.1.5 SAPDB Drivers

SAPDB drivers are installed by default in /opt/sapdb/interfaces/odbc/lib/

Static Dynamic
Driver libsqlod.a libsqlod.so

For SAPDB, use driver setup file from unixODBC: /usr/lib/libsapdbS.so
SAPDB will not find its odbc.ini file unless it is in /usr/spool/sql/ini
(which it will have created at install time). You must either copy or link
/etc/odbc.ini to that directory:

cd /usr/spool/sql/ini
ln -s /etc/odbc.ini .

On Linux systems /usr/spool with be a symbolic link to /var/spool

55

3.1. ODBC CHAPTER 3. SET UP

3.1.1.6 ODBC Warning

There are different versions of ODBC (2.5, 3.0, 3.5) - each with its own
peculiarities. There are also big differences between what is required and
what is optional - not all drivers implement the full ODBC functionality.

3.1.1.7 Native

Aubit 4GL can process DATABASE statements directly if it has a native
interface to the database engine. To achieve this, we need the database
vendor’s ESQL/C compiler (Embedded SQL in C) available when we com-
pile the Aubit4GL compilers.

Embedded SQL/C is an ANSI SQL standard for allowing you to embed SQL
statements into C source files. The SQL statements are enclosed within
EXEC SQL ... END SQL tags. Traditionally the ESQL/C file has a .ec
suffix. A vendor supplied pre-compiler then replaces the SQL statements
with appropriate calls to functions in the vendor’s libraries. The result of
the compile is a C code .c file which can be compiled and linked to make
executables, modules, or .so or .a library files.

At install time, the Aubit 4GL configure program looks for vendors ESQLC
files and builds an interface to each of the vendor databases detected.

Backend ESQL compiler Suffix
Informix /opt/informix/bin/esql .ec

PostgreSQL /usr/bin/ecpg .pgc
SAPDB /opt/sapdb/interfaces/precompiler/bin/cpc .cpc

SQLite??? Help here please!

Aubit4GL Native Connections
SQLTYPE RDBMS Compiler Comment
esql Informix esqlc
esqlPG PostgreSQL ecpg
pg PostgreSQL ecpg obsoleted by pg8
esqlSAP SAPDB cpc
esqlQ Querix esqlQ

The environment variable A4GL_SQLTYPE determines which connection
is used when program (or 4glc compiler) is run.

56

CHAPTER 3. SET UP 3.2. DATABASES

3.2 Databases

You will, in general, need to have a database engine available for Aubit4GL.
If you already have one installed (e.g. Informix, PostgreSQL, MySQL, SQL-
ite3, or an ODBC application) skip this chapter.

3.2.1 Informix

We do not supply documentation about installing or upgrading Informix. It
is proprietary software and IBM who supply it give ample documentation.
But remember that you will need to obtain and install the Informix CSDK
(Client Software Development Kit) in order to get the esql package.

3.2.2 PostgreSQL

Most people using Aubit4GL will use it in conjunction with PostgreSQL and
most of the current development effort in Aubit4GL is with PostgreSQL.
Aubit4GL now does not need PostgreSQL’s esqlc package. Instead use the
pg8 module.

3.2.2.1 Overview

PostgreSQL is a fully ANSI and ISO compliant Relational Database Man-
agement System (RDBMS) which arose from a project called Ingres at the
University of California, Berkeley under the direction of Professor Michael
Stonebraker in the 1980s. Ingres was spun off to become a commercial
product. Michael Stonebraker sold his developments in Object Relational
technology to Informix and the University renamed its free Ingres as Post-
gres and continued development. The name change to PostgreSQL reflects
its conformance with the official ANSI-ISO SQL3 public standard.

3.2.2.2 Documentation

The official website for PostgreSQL documentation is:
http://www.postgresql.org/docs/8.3

57

http://www.postgresql.org/docs/8.3

3.2. DATABASES CHAPTER 3. SET UP

3.2.2.3 Installation

PostgreSQL is installed from RPM packages supplied with the Linux Dis-
tribution. OpenSUSE provides about 30 Postgres packages of which the
following are essential:

• postgresql

• postgresql-server

• postgresql-devel

• postgresql-libs

These packages are best and most easily installed using the SUSE Yast2
program.
Take the route: Software -> Software Management. Enter: postgres in the
search field and check the boxes for the above packages (and any others you
want to install).
Alternatively you may install from the shell command line:

yast2 -i postgresql
yast2 -i postgresql-server
...

The simple package name is sufficient. Yast2 will find the full path and
filename of the package.
You can also use the zypper equivalent of yast2:

zypper install postresql-server
...

Once installed, the RPM system will create a user postgres intended to
be the superuser for PostgreSQL databases. (In principle the database
superuser should be a different user from root).
For Debian derived distributions of Linux such as Ubuntu the equivalent
installer is

apt-get install postgresql
...

58

CHAPTER 3. SET UP 3.2. DATABASES

3.2.2.4 Instances

PostgreSQL shares the same notion as Informix of a database instance being
a collection of databases with common resources (known as a cluster in
PostgreSQL parlance).

3.2.2.4.1 initdb Instances are created with the command initdb. For
example:
initdb --pgdata=/local/data/dev

In the example, dev is our name for the development instance of the data-
base. You create a directory like /local/data/dev in our example and pass
it to the option: --pgdata

By default, postgresql will build an instance in /var. This is vulnerable to
being lost when you upgrade or reinstall the operating system. It is much
better to create disk area outside the normal operating system directories.
Hence the use of the --pgdata=/local/data in our example.

initdb populates its given directory with all the system files, common cata-
logue tables, and a database called template1 which is copied when any user
databases are subsequently created in the instance.

To connect to the instance created, as a user you set the environment to
include:

• export PGDATA=/local/data/dev (or whatever is the directory where
the instance has been created)

• export PGPORT=5432 (or 5433 or 5434) as the TCP/IP port for fron-
tends to connect to the database.

For more details, use the man or info commands: e.g. info initdb

The backends need PGDATA to identify the directories where the database
files are.

The backends and frontends need PGPORT (or command line options) to
identify which instance of the program: /usr/bin/postgres to communicate
with.

To test that all is well, try the command:

59

3.2. DATABASES CHAPTER 3. SET UP

env | grep PG

and you should see PGDATA, PGPORT, PGDATABASE, and PGDATE-
STYLE with appropriate values.

3.2.2.4.2 pg_ctl start Having created a database instance, you must
start the postgres engine using the commands:

pg_ctl start -l /local/data/dev.log

The -l option determines where the instance will write its log.

Unlike Informix’s threaded architecture, PostgreSQL is single-threaded and
a new postgres backend process is spawned as each new connection is made
to the engine instance.

Another check you can make to see if postgres instances are running is the
command:

netstat -pa | grep postgres

This will return a line of output showing UNIX domain sockets with an
endpoint something like:

/tmp/.s.PGSQL.5432

where 5432 is the TCP/IP port for the socket.

3.2.2.4.3 pg_ctl stop The pg_ctl command is also used to stop the
postgres engine:

pg_ctl stop

There are in fact 3 stop options for pg_ctl: smart (the default), fast, and
immediate

60

CHAPTER 3. SET UP 3.2. DATABASES

• pg_ctl -m s[smart] waits for all users to disconnect before shutting
down

• pg_ctl -m f[ast] rolls back all current transactions then shuts down

• pg_ctl -m i[mmediate] immediately shuts down and will force re-
covery on restart

Calls to pg_ctl {start|stop} can be used at startup and shutdown via
the usual /etc/init.d scripts.

PostgreSQL will not allow the pg_ctl command to be run by any user other
than the Postgres super-user.

3.2.2.4.4 createdb Having created an instance, and having started
postgres with pg_ctl start, you may now create a database. There are 2
ways to do this

• createdb mydb
or

• Run psql or adbaccess and use the SQL statement:
create database mydb

The shell command createdb is just a wrapper for the SQL statement. In
both cases, the database name defaults to the user’s name. We override this
by setting the environment variable: PGDATABASE e.g.

export PGDATABASE=mydb.

3.2.2.5 Environment

Set up the following environment variables for PostgreSQL:

export PGDATABASE=mydb
export PGDATA=/local/data/$INSTANCE
export PGPORT=5432 # or 5433 or 5434
export PGDATESTYLE=’SQL, dmy’

61

3.2. DATABASES CHAPTER 3. SET UP

The character encoding used by the PostgreSQL engine will default to the
Linux LOCALE which is UTF-8. This seems to work fine and we can leave
it that way unless you run into trouble with your LANG environment and
special smbols like the British pound sign. UTF-8 is likely to become a
universal practice in the future.
By default, PostgreSQL tries to connect to a database with the user’s login
name. The variable PGDATABASE overrides this. When you run com-
mands like: psql it will connect to your database by default.
By default, PostgreSQL places its data in the /var partition. We regard
this as undesirable as it is vulnerable to loss or corruption when the OS is
reinstalled or upgraded. We install it in the partition:/local. To ensure
this, set the environment variable PGDATA.
By default, PostgreSQL listens on port 5432 for frontend programs seeking
to connect. When we run multiple instances of PostgreSQL, we need to
have a separate port assigned to each instance. If, for example, you have 3
instances: for development, training, and production, you could make the
following arbitrary assignments:

• dev: export PGPORT=5432

• tng: export PGPORT=5433

• prd: export PGPORT=5434

The frontends (e.g. psql, pg_ctl, createdb, etc.) all rely on the environment
variable PGPORT if it is set. PGPORT can be overidden by command line
options, otherwise the default is to use port 5432.
We need to set PGDATESTYLE to SQL, dmy to get your style of date
format. The default is American style middle-endian dates (mdy). You
can configure European style date within SQL also using the syntax: SET
datestyle TO "SQL, dmy";
Set the following environment variable for Aubit4GL:

export A4GL_LEXTYPE=C

export A4GL_SQLTYPE=pg8
The above environment variables may be set up in

62

CHAPTER 3. SET UP 3.2. DATABASES

• /etc/profile.local as the default for all users

• ~/.profile in each user’s home directory (in /export/username)

• in other directories dotted from ~/.profile (using the shell . com-
mand)

3.2.2.6 Maintenance

3.2.2.6.1 vacuumdb The vacuumdb command is PostgreSQL’s equi-
valent to the Informix UPDATE STATISTICS command. You can run it from
the command line or within psql or adbaccess as an SQL statement. Its
Synopsis:

vacuumdb [--full] [--analyze]

The equivalent SQL syntax is: VACUUM FULL ANALYZE

with the FULL and ANALYZE optional.

For documentation on vacuumdb, use info or man:

info vacuumdb

3.2.2.6.2 pg_dump The PostgreSQL command: pg_dump is used in
place of Informix’s dbschema and dbexport commands.

Use pg_dump -s for a schema of the whole database.

Use pg_dump -st access for a schema of the access table.

Use pg_dump for a complete export of the schema and data. The database
will be placed in a single file of SQL statements which are sufficient to reload
the data using the commands: psql or adbaccess

3.2.2.7 Commands

The installation of PostgreSQL results in the following commands being
installed in /usr/bin:

63

3.2. DATABASES CHAPTER 3. SET UP

clusterdb
createdb
createlang
createuser
dropdb
droplang
dropuser
pg_dump
pg_dumpall
pg_restore
psql
reindexdb
vacuumdb
initdb
ipcclean
pg_controldata
pg_ctl
pg_resetxlog
postgres
postmaster
rcpostgresql
--- contributed --
oid2name
pgbench
vacuumlo

Many of the above are simply shell wrappers around the same command in
SQL. Some (e.g. postmaster and postgres) are meant to be invoked only
by other commands (e.g.: pg_ctl). Use the commands info or man to learn
more.

3.2.2.8 psql

psql is the PostgreSQL SQL interpreter. Unlike Informix’s dbaccess it is
not a form mode menu program but instead uses the Linux readline library
to buffer a historied command line interface very similar to the Unix shells.

Use psql to execute SQL statements.

64

CHAPTER 3. SET UP 3.2. DATABASES

• type \h for help with psql’s SQL syntax

• type \? for help with psql’s own internal commands

To use psql to execute an SQL file:

psql -f filename [mydb]

You can echo SQL statement(s) into psql as follows:

echo "select * from agent;" | psql

This is faster for one-line statements as psql exits immediately after execu-
tion, but be careful to protect special characters (like ;) from the shell by
quoting.

Another useful argument for psql is -l which lists the available databases
and exits immediately.

Aubit4GL provides adbaccess as a workalike for Informix’s dbaccess. This
is fully featured when connected to an Informix database but still lacks some
capabilities with PostgreSQL as a backend. You will likely prefer adbaccess
for tables with rows of many columns (such as the table: access).

We recommend that you not use PostgreSQL’s esql package. Aubit4GL’s
pg8 library provides all the necessary connectivity with the PostgreSQL
engine.

3.2.2.9 Stored Procedures

PostgreSQL supports stored procedure languages including its own native
PL/pgSQL. This is similar to Informix’s SPL but has quite different syntax.

We need to use PL/pgSQL to perform the translation of variables con-
taining CONSTRUCTed clauses from Informix MATCHES statements into
PostgreSQL regular expression (RE) statements (using the ~ operator).

The algorithm of conversion is:

• start the re with a ^ – RE BOL (beginning of line)

65

3.2. DATABASES CHAPTER 3. SET UP

• replace ? with . – RE for any single char

• replace * with .* – RE for any single char followed by zero or more
others

• replace . with \. – RE for a literal .

• otherwise just copy the char

• At the end if the final char is not * add a $ (RE EOL end of line)

3.2.2.9.1 PL/pgSQL matches function

CREATE FUNCTION matches_to_regexp(str text, esc text)
RETURNS text

AS $$
DECLARE

lv_rval text;
lv_c char;
lv_cnt int4;

BEGIN
lv_cnt:=0;
lv_rval:=’^’;
for lv_cnt in 1..length(str) loop

lv_c:=substr(str,lv_cnt,1);
if lv_c=’?’ then

lv_rval:=lv_rval||’.’;
elsif lv_c=’*’ then

lv_rval:= lv_rval||’.*’;
elsif lv_c=’.’ then

lv_rval:=lv_rval||E’\.’;
else

lv_rval:=lv_rval||lv_c;
end if

end loop;
if substr(str,length(str),1) !=

’*’ then
lv_rval := lv_rval || ’$’;

end if;

66

CHAPTER 3. SET UP 3.2. DATABASES

return lv_rval;
END;
$$

LANGUAGE plpgsql;

3.2.2.9.2 $$ quoting In the above code, $$ is a quoting mechanism
which allows the usual single and double quotes to be used inside the stored
function without interference with the syntax of the function declaration.
The $$ can also be replaced with an identifier between the $ symbols: e.g.
$fred$ and differently identified quotes can nest within each other.

3.2.2.9.3 E escaping In the above stored procedure the E’\.’ expres-
sion tells pg to treat the \. literally and not interpret the \ as an escape
mechanism.

The PL/pgSQL syntax also allows CREATE OR REPLACE FUNCTION f() dur-
ing development to obviate the need for a DROP FUNCTION f() when modi-
fying and testing.

3.2.2.9.4 PL/pgSQL install You may need to run the following SQL
statements before the above will be accepted:

CREATE LANGUAGE plpgsql;
CREATE FUNCTION plpgsql_call_handler()
RETURNS opaque AS ’/usr/lib/postgresql/plpgsql.so’,
’plpgsql_call_handler’ LANGUAGE c;
ALTER FUNCTION public.plpgsql_call_handler()
OWNER TO informix;

A good technique is to add the above stored procedure statements to the
template1 database so that in the event of dropping and reinstalling your
database the matches_to_regex() function will be automatically built again
by the statement: CREATE DATABASE mydb;

67

3.2. DATABASES CHAPTER 3. SET UP

3.2.3 MySQL

Install various Mysql components e.g. on Ubuntu

apt-get install mysql-common \
libmysqlclient15-dev \
mysql-server mysql-client

You should now have mysql running.

MySQL setup example:

#set up the MySQL user userpt18z97 but first of all set up a root passwort
in mysql for safety

#start MySQL as root, we assume you run MySQL only locally for the time
being

As root:

mysql
mysql>update user

set password=PASSWORD("x5a4p4i7")
where User=’root’;

From now on you start MySQL as root with "mysql -p"

Create your initial database

mysql>create database mydb;

Tip: if you want to be able to switch databases in your programs create one
database emptydb which has all the tables you use in mydb but without
data. This is then used in the .per and the .4gl at compile time and you only
switch later to the real database mydb with data in your 4gl application.
Naturally emptydb must reflect the exact db-schema of mydb at all times.

Grant whatever privileges you want the user to have, below is the maximum
(not advisable in production)

68

CHAPTER 3. SET UP 3.2. DATABASES

mysql>grant all privileges on mydb.*
to ’userpt18z97’@’localhost’
identified by ’p5z1m7u9’
with grant option;

All further operations on the db (e.g.: create table...) should be done
only as user userpt18z97

...

#Spanish keyboard with Euro sign for example, 7-bits chars (ncurses) uni-
code would be a different story

export LANG=es_ES@euro
export A4GL_SQLTYPE=mysql
export A4GL_SQLUID=userpt18z97

#can be different from logon password, of course

export A4GL_SQLPWD=p5z1m7u9
export A4GL_UI=TUI
export A4GL_DBNAME=mydb
export DBDATE=dmy4.

for example with putty settings example Spanish keyboard : Terminal/keyboard
"linux",

putty contd: ...Window"80"x"25",Translation "ISO-8859-15:1999 (Latin-
9, "euro")", etc...

export TERM=linux

Our thanks to Karl Rumpf (klrumpf@gmail.com) for this advice.

3.2.4 SQLite3
export A4GL_SQLTYPE=sqlite3
export A4GL_LEXTYPE=C

69

3.2. DATABASES CHAPTER 3. SET UP

DBNAME needs to contain the full path to where your SQLite3 database
is. e.g.:

export DBPATH=/home/john/data

When the 4glc compiler encounters the statement:

DATABASE mydb

It will search the DBPATH directories for a database file: mydb

SQLite3 is unusual in that it does not have an SQL statement to create a
database. You create a database by supplying the database path and name
on the calling line. e.g.:

sqlite3 /home/john/data/mydb

If the mydb file does not exist, it will be created. Note that SQLite3 needs
the full path to the database file unless it is in the current directory. Au-
bit4GL syntax does not accept a path in the DATABASE statement or
the CONNECT TO statement, hence the need to supply the path in the
DBPATH variable. Once Aubit4GL has found your full pathname for the
database in $DBPATH, it will subsequently use that full path in all its
communication with the SQLite3 library.

3.2.5 SQLServer

Bernard Moreton (itman@tnauk.org.uk) has this advice for setting up Au-
bit4GL to work with SQLServer.

SQLServer is a Microsoft database engine available only on Windows.

To access SQLServer, from a Linux machine you need to install

• freeTDS

• ODBC

70

CHAPTER 3. SET UP 3.2. DATABASES

I run Aubit4GL against a (pre-installed) MS SQLServer database. This
is a matter of ’needs must’, and I would not necessarily recommend that
database engine as first choice from cold.

On MS Windows, there is little to do. Users run a batch file to set the
environment and start the core menu module:

@echo off
set AUBITDIR=y:\a4gl
set A4GL_HOME=y:\a4gl
set PATH=%AUBITDIR%\bin;%AUBITDIR%\lib;%AUBITDIR%\local-bin;%PATH%
set A4GL_SQLTYPE=odbc32
set A4GL_DBDATE=DMY4/
set A4GL_UI=TUI
set LOCAL_BIN=y:\a4gl\local-bin
set A4GL_CLASSPATH=y:\a4gl\local-bin
set ALLOWUSINGEXT=Y
set A4GL_ALWAYS_EXTENDED_FETCH=Y
set A4GL_STATUSASCOL=Y
set ALLOWDYNAMIC=Y
%AUBITDIR%\local-bin\tnauk.exe
exit

Permissions for users are all set up through the normal MS database system.

On W32, Aubit is used only for reporting purposes, since the database is the
core of a proprietary membership system; but running from Linux, where
all the development is done, I also have a number of modules that write to
the database under controlled conditions.

On Linux, freeTDS is required; and sqlconvert/INFORMIX_SQLSERVER.cnv
is already present in the standard build. Access permissions are set up by
the normal .aubit4gl.acl

71

3.2. DATABASES CHAPTER 3. SET UP

72

Chapter 4

Problems

4.1 Curses

If you want Aubit4GL to use 4GL’s character screen control statements
(e.g. MENU, DISPLAY, DISPLAY ARRAY, etc), you will need the curses
library: NCURSES v 1.78 or later.

4.1.1 Wide Characters

Where in the past a character meant 1 byte (using either the lower 7 bits
for 127 possible characters, or later 8 bits for 255 possible characters). The
mapping of the numbers to characters is called an encoding. Increasingly
Linux distributions and postgreSQL are configured by default to use the
UTF-8 encoding. Aubit4GL can work with UTF-8 which is a multibyte
encoding but only if a special wide version of curses is installed.

4.1.2 Encodings

The following encodings are now common:

Unicode multibyte character - ie - a single character needs more that one
byte to store it. Chinese, Japanese, and Korean - need lots more

73

4.1. CURSES CHAPTER 4. PROBLEMS

than 255 possible characters. The Java programming language uses
Unicode as its encoding (both internal and external).

UTF-8 unicode using 8 bit characters - this uses the top bit to say its
multibyte. It can store ascii 0-127, then anything over that needs
more than one byte. The number of bytes actually used can be up to
4 - but can also be 1 (for <=127) or 2 etc.

iso8859-1 http://en.wikipedia.org/wiki/8859-1 Common single byte 8-bit
character encoding which uses the characters between ASCII 128 and
255 to store characters common in western alphabets.

iso8859-15 similar to 8859-1 - but with some values changed.

The C library has functions like isprint() which determine if a character is
printable. The curses library uses this internally for determining whether
we can display a character. If LANG is not set then the default character set
is the ASCII characters 1-127 (the first 31 are mostly control codes which
are not printable).
This means that if LANG is not set the 0xa3 (a UK pound) won’t be print-
able and so you cannot use it. Likewise for accented vowels used in French,
or Umlauts over o’s and u’s in German etc.. If you set LANG=en_GB,
it sets the character set for isprint() to the iso8859-1 and 0xa3 becomes
printable. Note: this is not unicode or multibyte etc. Its just plain old
ASCII.
On modern Linux distributions of Ubuntu, OpenSUSE, etc in the UK,
LANG is often set to en_GB.UTF-8 (meaning British but using UTF-8
character encoding). With UTF-8, the high bit is used to mark it as a
multibyte character, so 0xa3 is no longer available for the pound ("£") -
we need a new multibyte character instead. In UTF-8 it is in fact 2 bytes:
c2a3.
If, however, we want to use the Latin (western) character set, we need a
non-UTF-8 locale in LANG and we can use UI=TUI
If we want to use UTF-8, we need a UTF-8 locale (e.g. en_GB.utf-8) and
we need to use UI=TUI_wide. TUI_wide though will only be compiled up
if it detected the wide ncurses which is unfortunately not always compiled
by default in Linux distributions.
To get Aubit4GL to work with multibyte character sets such as UTF-8 you
may have to

74

CHAPTER 4. PROBLEMS 4.1. CURSES

• install the wide character ncurses library

• compile Aubit4GL from source so that when you ./configure it, it
will compile and generate a
libUI_TUI_wide.so in the plugins directory.

• export A4GL_UI=TUI_wide

• set your LOCALE so that isprint() returns true for the higher char-
acters..

If you are using ISO8859-1 or similar, (i.e. not multibyte), you can check
for printable characters with a C program something like :

#include <locale.h>
#include <ctype.h>
#include <stdio.h>
main()
{
int a;
setlocale (LC_ALL, "");
for (a=0;a<255;a++)
{
int isp;
if (isprint(a))
{

printf("%3d %c\n",a,a);
}
else
{

printf("%3d Not printable\n",a);
}

}
}

You can try with different LANGs, but if the character is not printable, the
ncurses form library will not allow you to use it.

75

4.2. ENGINES CHAPTER 4. PROBLEMS

4.1.3 LENGTH

Regardless of whether you have multibyte characters, 8-bit characters, or
simple ASCII, the 4GL length(str) function returns the byte-count of the
string which will be more than the character count if there are multibyte
characters in the string. Also the function substr(i) may point into part
of a multibyte character and produce unexpected output (or an unprintable
character).

4.2 Engines

Informix, Ingres, PostgreSQL, and Sybase engines have their origins in Unix
at Berkeley in the 1970s. They share some features which are counter to
the ANSI SQL standards which were later defined in 1986.

• Lower Case. By default, they downshift all words before parsing (un-
less the words are protected by quotes). This is natural for Unix users
but is the inverse of the ANSI standard which upshifts all unquoted
words. The standard was dominated by mainframe system vendors
(IBM DB2, Oracle, SAP, etc).

• Database concept. Each instance of an Informix or PostgreSQL en-
gine can have many databases. In contrast, IBM, Oracle, SAP, etc
have only one database per engine instance. The Informix concept of
separate databases is implemented on these other systems each as a
SCHEMA.

• Outer Joins. These were originally a controversial concept and not
defined in the 1986 SQL standard. The 1992 SQL standard added a
JOIN clause to SQL SELECT statements to implement outer joins.
Prior to that each database vendor had its own extension to the stand-
ard to implement outer joins.

• Temporary tables. The SQL standard did not provide for capturing
the rows from a SELECT statement into a temporary table. Informix
and Postgres both allow this but with differing syntax.

• SERIAL datatype. Not part of the SQL standard but an Informix
extension. PostgreSQL has a SERIAL type but it is used differently.

76

CHAPTER 4. PROBLEMS 4.2. ENGINES

With Informix, you supply a zero as the SERIAL value, and the engine
replaces the zero with the next serial number. With PostgreSQL, you
don’t supply a value and the engine supplies the next serial number
as a default. If you supply a zero, it is accepted!

• Functions. Informix has a number of functions TODAY, CURRENT,
USER, MDY(m,d,y), EXTEND, etc which are not in the SQL stand-
ard or have different names (e,g NOW(), CURRENT_DATE, etc).

• MATCHES clause. Informix, in addition to the SQL standard LIKE
clause, allows you to SELECT rows which match patterns using the
Unix shell wildcard symbols ([]*?). PostgreSQL has a ~ operator
which matches RE (regular expression) patterns in the manner of
perl.

• Mandatory FROM clause. In Informix, the SELECT statement must
have a FROM clause. PostgreSQL (and others like Sybase) does not
require a FROM clause.

• MONEY datatype. A variant on DECIMAL which is suitable for
financial systems.

Aubit4GL allows you to connect to different database engines. This leads
to difficulties when you are coding into your 4GL programs any of the above
Informix idioms which are not part of the SQL standard. To use Aubit4GL
with non Informix engines, you need to confine yourself to just the ANSI
standard, or rely on Aubit4GL’s translation mechanism to convert to In-
formix, or get a special version of the engine which supports the Informix
variations. Nearly all major applications written in 4GL exploit the In-
formix SERIAL behaviour and the 4GL code usually relies on getting the
serial value for the sqlca.sqlerrd record. For this you need an Informix
compatible engine.

Aubit4GL can connect directly to

• Informix SE, IDS 7, or IDS 9 or later. Best of breed commercial
engines with full SQL92 compliance. You must purchase a licence from
IBM-Informix in order to use it. Has a multi-threaded architecture
which gives it a performance advantage over all of its rivals. Now that
it is owned by IBM, it will gradually be absorbed into IBM’s own DB2
range of products and will gradually disappear.

77

4.2. ENGINES CHAPTER 4. PROBLEMS

• PostgreSQL a free opensource engine now with full SQL92 compli-
ance. Fully free and opensource. Shares its origins with Ingres at
UCB (University of California Berkeley). Unlike Informix IDS, it is
not based on a threaded architecture and each frontend connection
results in a separate backed process being spawned to service it. You
can get postgresql from :
www.postgresql.org.
At the time of writing, the current version is 8.3. Each Linux dis-
tribution has its own RPMs which you get from the distribution site
(try a Google search). Mike Aubury has created a native connection
dubbed pg8 which works with this version.
In the past there was a special version of PostgreSQL 7.4 patched to
imitate the Informix behaviour mentioned above: The site for this
project was:
gborg.postgresql.org/pginformix/download/download.php
and you could get the source tarballs there. You could get the RPMs
from
informix.postgresintl.com.
The patch project has not been updated for PostgreSQL 8.0 onwards
and we recommend that you change to using the pg8 library instead.
These RPMs are known to install OK on SuSE 9.0 and you may
be lucky on similar systems of equivalent vintage. The RPMS are
patched from version 7.4. If you are installing the RPMs on a system
with PostgreSQL RPMs already installed, you may need to add the
--oldpackage argument to the rpm -Uvh command if the installled
version is 7.4.1 or 7.4.2. It is hoped that future versions of Postgr-
eSQL will fold these Informix patches into the regular distribution.
The latest patched postgres version is also available from Aubit web-
site http://www.aubit.com

• SAPDB a free and opensource engine up to version 7.4 with threaded
architecture. The engine was SAP’s tried and true commercial product
and was solid and very fast. Unfortunately, MySQL acquired the
rights to develop the next version of SAPDB (to be renamed MAXDB)
and the interfaces are no longer free (GPL but not LGPL licensed).
SAPDB has dropped below the radar now. It will probably still work
if you have the old library files however - but we no longer test for it
or include it in the binary releases.

• SQLite3 a free and opensource embeddable engine with nearly full

78

http://www.aubit.com

CHAPTER 4. PROBLEMS 4.2. ENGINES

SQL92 compliance. A small engine (only 25K lines of C source code)
which we actually deliver statically linked into our binary distribu-
tions of Aubit4GL. It supports most of the SQL92 standard but is
typeless (everything is either a char type or numeric and the distinc-
tion is not enforced). Get it with your distribution or failing that from
www.sqlite.org

• MySQL has been absorbed first by SUN MicroSystems then when
Oracle bought out SUN, by Oracle. MySQL had a policy of free
if you are free, commercial if you are commercial. Now that it is
owned by Oracle who, of course, have their own proprietary database
engine, who knows what will be the fate of MySQL? In the meantime,
Aubit4GL works with MySQL.

• Any other database engine with an ODBC interface including PRE-
PARE and SCROLL CURSOR statements.

79

4.2. ENGINES CHAPTER 4. PROBLEMS

80

Chapter 5

Modules

5.0.1 Choices

Aubit4GL uses an abstraction layer for many of its functions. This means
that the way Aubit4GL works can be controlled very tightly by the setting
of various variables. These variables specify which library functions will be
called from the compiler and/or 4GL program and hence affect the following
areas:

81

CHAPTER 5. MODULES

Variable Function Library
A4GL_LEXTYPE Set generation

language
libLEX_???

A4GL_LEXDIALECT Set language dialect
(used for ESQL/C
generation)

libESQL_???

A4GL_PDFTYPE Specify the enhanced
report handler

libEXREPORT_???

A4GL_HELPTYPE Specify the help
handler

libFORM_???

A4GL_MENUTYPE Specify the extended
menu handler

libMENU_???

A4GL_MSGTYPE Specify the message
handler

libMSG_???

A4GL_PACKER ’packer’ to use saving
forms/reports etc (eg.
XML)

libPACKER_???

A4GL_RPCTYPE Specify the Remote
Procedure Call
handler

libRPC_???

A4GL_SQLTYPE Specify the SQL
handler

libSQL_???

A4GL_SQLDIALECT Specify the SQL
dialect to use

libSQLPARSE_???

A4GL_UI output module to use
to display the
program

libUI_???

Aubit4GL’s libraries are created in the directory $AUBITDIR/plugins-1.2_14.
With each new version of Aubit4GL a new plugins directory is created. This
allows you to revert to earlier versions more easily.
Most of them have filenames of the form libXXX_YYY.so (except libaubit4gl.so)
so for example :
libSQL_esql.so XXX=SQL YYY=esql
libUI_HL_TUI.so XXX=UI YYY=HL_TUI
The XXX represents the module type, the YYY the module name. Al-
though Aubit4GL is distributed in a form which will be mostly Informix4GL
compatible - you will almost certainly need to adjust some of these settings.

82

CHAPTER 5. MODULES

This is my list. Yours will probably be different! :

• libaubit4gl.so libbarcode.so libchannel.so

• libA4GL_:
file.so HTML.so string.so
These are miscellaneous extra libraries.

• libDATA_:
menu_list.so module.so
report.so struct_form.so
These are internal libraries for reading data files.

• libESQL_
INFORMIX.so POSTGRES.so
These are helper libraries used when A4GL_LEXTYPE=EC. The library
used is taken from the A4GL_LEXDIALECT variable. This library is used
to copy between native types and aubit types (eg for decimals, dates
etc) . Not used when A4GL_LEXTYPE=C

• libEXDTYPE_mpz.so
Example extended datatype library (implements the GNU mpz data-
type).

• libEXREPORT_:
NOPDF.so PDF.so
Extended report handling. libEXREPORT_PDF.so relies on having pd-
flib installed. It will not be generated otherwise. PDF reports are
experimental.

• libFORM_:
GENERIC.so NOFORM.so XDR.so
This is used to read, write, and process a form file. The library is spe-
cified by the A4GL_FORMTYPE variable. e.g.: A4GL_FORMTYPE=GENERIC
If you have libFORM_XDR.so - that is probably the best one to use,
so
$ export A4GL_FORMTYPE=XDR
If you don’t have libFORM_XDR.so, you’ll need to use the GENERIC
packers
$ export A4GL_FORMTYPE=GENERIC
You will then also need to specify the GENERIC packer by setting
A4GL_PACKER (see PACKER)...

83

CHAPTER 5. MODULES

• libHELP_std.so
Always set to std - can be ignored

• libLEX_C.so libLEX_CS.so libLEX_EC.so libLEX_PERL.so
Specifies the output format - currently only C and EC are supported.
For C generation, calls are made to internal SQL functions within the
library specified by A4GL_SQLTYPE (see SQL) For EC generation, a
.ec file is generated which should be compiled used native database
tools (like esql for informix and ecpg for postgres). If you can use EC
generation - use it, performance will be better...

• libLOGREP_:
CSV.so TXT.so
Logical report handling. Converts logical reports to different formats

• libMENU_NOMENU.so
GUI Menu handling. Obsoleted (probably).

• libMSG_NATIVE.so
Ignore

• libPACKER_:
MEMPACKED.so PACKED.so
PERL.so XDR.so XML.so
This specifies the packer to use for reading and writing data files. The
library is specified via the A4GL_PACKER variable. Use MEMPACKER
for embedding forms into a program. Don’t use PERL unless you know
what you are doing. PACKED, XML and XDR are all reasonable
packers. The packer library is only used when FORMTYPE etc is set
to GENERIC.

• libRPC_NORPC.so libRPC_XDR.so
Specifies which RPC protocol to use - advanced stuff - still experi-
mental.

• libSQL_:
esql.so esql_s.so FILESCHEMA.so
ifxodbc.so nosql.so
mysql.so pg8.so pgodbc.so
sqlite3.so unixodbc.so
This is probably the most important setting, specified through SQL-
TYPE - this determines how Aubit is going to talk to the database.

84

CHAPTER 5. MODULES

There are two distinct times that this is done: At compile time At
runtime

• libUI_:
CONSOLE.so lHL_TUIN.so HL_TUI.so
TUI.so TUI_s.so HL_GTK.so
This specifies how data will be displayed to the user. This handles all
the UI controls (prompt,display, input etc)

CONSOLE - is a simple I/O module which does not use any control
codes. Just printfs and fgets etc. Use this for programs
to be called by cron, at, etc where they will run without a
terminal (real or virtual) connected to stdout.

TUI - The traditional output for dumb terminals (real or emu-
lated)

TUI-WIDE - for wide characters (e.g. UTF-8, Unicode, etc)
HL_TUI - Was to be the next version of TUI, abstracted to help

make other HL_.. modules. There will no further devel-
opment of this.

HL_TUIN - Ignore
HL_GTK - GTK version. This will not be developed further and

will be superceded by the new generation of Visual Display
Clients.

• libXDRPACKER_:
menu_list.so module.so
report.so struct_form.so
This is a helper module when FORMTYPE etc are set to XDR. These
contain the actual XDR routines.

The correct selection of these libraries is critical to the operation of Au-
bit4GL, because everything is so highly configurable.

85

CHAPTER 5. MODULES

86

Chapter 6

Aubit4GL Compilers

6.1 A4GL compilers

Aubit4GL provides the following compilers:

• 4glc which translates x4GL code into C

• 4glpc which is a wrapper to call 4glc and gcc (or esql/c)

• fcompile which creates a binary form file from source

• amkmessage which creates a binary help file from source

On Linux/Unix systems these programs may be invoked as arguments to
the aubit script, e.g.
aubit 4glpc myprog.4gl -o myprog

The aubit program sets the environment from Aubit4GL configuration files
and ensures that LD_LIBRARY_PATH includes the appropriate A4GL
libraries. You can omit it and use 4glc/4glpc etc directly if you setup
LD_LIBRARY_PATH & PATH correctly, as well as any settings specific
to your installation.
This file if first read from Aubit 4GL installation directory, as specified by
$AUBITDIR, and then, if it exists, from users home directory, as specified

87

6.2. 4GLPC CHAPTER 6. AUBIT4GL COMPILERS

by $HOME, effectively overriding settings from $AUBITDIR/.a4glrc that
exist in both places. It also accepts a number of command line switches,
and environment variables.

6.2 4glpc

The 4glpc compiler is really just a wrapper around the 4glc, gcc, and esql/c
compilers. The idea is that the type of each file passed on the command line
is determined, as well as the output object type, and the relevant compilers
are called in stages to generate that output. For example :
4glpc myprog.4gl -o myprog.4ae
Assuming we are compiling using A4GL_LEXTYPE=EC, then we know
that we must :

• compile myprog.4gl -> myprog.ec using 4glc

• compile myprog.ec -> myprog.c using the esql compiler

• compile myprog.c -> myprog.o using ’gcc’ or some other C compiler

• link myprog.o -> myprog.4ae

For A4GL_LEXTYPE=C, we can just remove the myprog.ec -> myprog.c
and generate myprog.c directly from the 4gl.
4glc has a synonym: a4glc which you can use when you want to exploit
the shell history ! mechanism. e.g.
!a4
will cause the most recent command starting with a4 to be re-executed.
(This is likely to be a4glc modname.4gl). If you try to use
!4g
instead, the shell with rerun the 4th command line from the history file.

6.2.1 Usage

Basic Aubit 4GL compiler usage
4glpc [options] -oOutFile.ext file.ext [file.ext...]

88

CHAPTER 6. AUBIT4GL COMPILERS 6.2. 4GLPC

Extensions (.ext):

In files list, all .4gl files will be compiled to c or .ec etc as applicable , other
files passed to linker.

The extension specified on the file passed to the ’-o’ flag will normally decide
type of linking:

ao=object

aox=static library

aso=shared lib

4ae=executable.

Options

89

6.2. 4GLPC CHAPTER 6. AUBIT4GL COMPILERS

Option Meaning
-L Passed directly to the C

compiler (specifies where
libraries will be found)

-o Specify the output file
-c Compile only - no linking
-e Just generate the .c file
-I Passed directly to the C

compiler (specifies where
include files can be found)

-G or –globals Generate the globals map file
-S or –silent no output other then errors
-V or –verbose Verbose output (-V1.. -V5 for

increasing levels of verbosity)
-N name Prefix all functions with

name (default ’aclfgl_’)
–namespace name Same as -N option
-n or –noprefix remove any prefix from

function names (= -N ’ ’)
-v or –version Show compiler version and

exit
-f or –version_full Show full compiler version

and details
-h or -? or –help Show this help and exit
-t TYPE or –lextype TYPE output language,

TYPE=C(default), EC,
WRITE, or PERL

-td TYPE or –lexdialect TYPE Specify the output language
dialect for ESQL/C
generation (INFORMIX or
POSTGRES)

-k or –keep keep intermediate files
(default)

-K or –clean clean intermediate files when
done

-s[01] or –stack_trace [01] Include the stack trace in file:
0-Don’t generate
1-Generate(Default)

–use-shared/–use-static compile with shared libraries
-echo Don’t really compile (ignored

for now)
-d dbname Specify an alternative

database name to use for
compilation

–database dbname same as -d option (note
ignores that specified in the
.4gl

-4 or –system4gl Used internally - Ignores any
clashes with builtin library
names

–map Generate an unload file with
some 4GL code metrics

–as-dll Generate a shared library as
the output type

–make-compile Compare file times and only
recompile where required
(very simplistic)

90

CHAPTER 6. AUBIT4GL COMPILERS 6.2. 4GLPC

Examples:
$ 4glpc sourcefile.4gl -o executablename.4ge

$ 4glpc sourcefile.4gl -c -o objectname.o

$ 4glpc -shared file.4gl -o file.4ge

$ 4glpc -static -echo file.4gl -o file.4ge

$ 4glpc -debug file.4gl -o file.debug 4glpc -map -echo file.4gl

As a matter of interest - the 4glpc compiler itself is written in Aubit4GL.
The 4glpc compiler will use a number of configuration files ($AUBITDIR/tools/4glpc/settings)
to control what commands will be used and what options will be passed to
them. These will normally be setup correctly, but if you wish to change
them (for example if you are porting to a new database backed, or a new
platform), then you may need to know the order in which they are read.
This will depend on the A4GL_LEXTYPE, A4GL_LEXDIALECT, TAR-
GET_OS, TARGET.
For an example, assume A4GL_LEXTYPE is set to EC,
A4GL_LEXDIALECT=POSTGRES, TARGET_OS=linux (this is set by
the ./configure script at compile time), and TARGET=i686-pc-linux-gnu
(this is also set by the ./configure)
Files will be read as :

tools/4glpc/settings/EC

tools/4glpc/settings/EC_POSTGRES

tools/4glpc/settings/linux

tools/4glpc/settings/linux__EC

tools/4glpc/settings/i686-pc-linux-gnu

tools/4glpc/settings/i686-pc-linux-gnu__EC

tools/4glpc/settings/i686-pc-linux-gnu__EC_POSTGRES

Settings in any later configuration file will overwrite those in any previous
file. This gives the maximum configurability possible.

91

6.3. 4GLC CHAPTER 6. AUBIT4GL COMPILERS

6.3 4glc

Aubit 4GL source compiler 4glc is generally invoked using the 4glpc wrap-
per. It can be involked directly :
aubit 4glc <filename>.4gl
For historic reasons, the 4glc compiler can also compile most modules to an
executable. In order to do this the 4glc compiler uses the normal C compiler
and passes unknown options on to it e.g.:
aubit 4glc file.4gl -c -o file.o
aubit 4glc -shared file.4gl -o file.4ge
aubit 4glc -static -echo file.4gl -o file.4ge
aubit 4glc -debug file.4gl -o file.debug
aubit 4glc -map -echo file.4gl
compiles to an object file rather than a linked executable
It is now best practice, unless there is a very good reason otherwise, to not
call 4glc directly as all, and to invoke it via the 4glpc wrapper instead.

6.4 Compiling forms

$ fcompile file.per
fcompile compiles form compatible with both GUI and TUI run-time modes.

6.5 Compiling help files

Compile these using amkmessage
$ amkmessage helpfilename (without .msg extension)
This will generate the compiled help message file with a .hlp extension.
Please note that many Informix-4GL programs assume that compiled help
file will have extension ".iem". You can just rename created .hlp file to .iem
if needed.
For format and syntax of help files, please see example file in test/ directory.
It is fully compatible with Informix standard definition.

92

CHAPTER 6. AUBIT4GL COMPILERS6.6. COMPILING MENU FILES

6.6 Compiling menu files

Menu files are currently not used, so you can safely ignore them (for now...)

93

6.6. COMPILING MENU FILESCHAPTER 6. AUBIT4GL COMPILERS

94

Chapter 7

4GL Language

7.1 Introduction

The 4GL programming language was born in Informix Corp in 1986. Be-
cause of that, and not to conflict with with 4GL as general programming
concept (BASIC is in principle also a Fourth Generation Language, as op-
posed to C, which is a Third Generation Language), we should refer to basic
4GL syntax as I4GL.

Today, even among Informix-distributed products, there is distinction between
classic I4GL and D4GL (Informix name for 4J’s 4GL compiler), which in-
troduced a number of language enhancements. Then Informix implemented
some of these enhancements back into classic 4GL, and added some of it’s
own (v 7.3), which 4J in turn implemented in its Universal Compiler V3
(this is the actual name for 4Js product that Informix distributes under the
name D4GL - Dynamic 4GL.)

We refer to the syntax of different implementations as:

• I4GL - Informix non-GUI, a.k.a. classic products syntax, V 7.3

• D4GL - 4Js extended syntax, including I4GL

• A4GL - Aubit 4GL specific syntax, including I4GL

95

7.2. SUMMARY: CHAPTER 7. 4GL LANGUAGE

• x4GL - all of the above as general name for all

Luckily for us, Querix decided not to change the language, but instead do
all GUI related configuration from separate configuration files.

Aubit 4GL, as a package, and A4GL, as a language definition, is a superset
of I4GL.

Our first aim is to provide full unconditional compatibility with I4GL. Since
this means that 90% of the syntax used in A4GL will be I4GL, and since this
document is not intended to be an I4GL manual, we strongly suggest that
you refer to existing Informix documentation and tutorials downloadable
from their web site, and books about 4GL, like:

Informix Unleashed, (ISBN 0672306506) a complete book in HTML format
about Informix products, by John McNally. You will find several complete
chapters about 4GL language there, including chapters on Informix data-
base servers. You will also learn there that "To develop with a 4GL, the
developer does not have to be an expert programmer".

(I have asked the author for permission to include his book in Aubit 4GL
distribution, but received no answer)

The rest of this page will serve as a quick and dirty crash course to give you
some idea of what the I4GL looks like, as a language.

For A4GL extensions. please refer to the appropriate sections of this manual.

7.2 Summary:

* To learn I4GL, refer to Informix manuals for Informix-4GL version 7.3 (
http://www.informix.com or direct links to Informix 4GL by example,Informix
4GL Concepts and Use, Informix 4GL Reference Manual - please remember
that exact locations can change, and if they do, use the search function on
the Informix web site to find new locations of this documents), and third-
party books.

* To learn about A4GL extensions, read this manual

* To get some idea about what I4GL looks like, and to get some idea about
combined I4GL and A4GL functionality, continue reading this page

96

CHAPTER 7. 4GL LANGUAGE 7.3. SHORT INTRO TO X4GL

* To get 4GL code examples, go to http://www.informix.com/idn and look
for the Example application, or download one of GNU 4GL programs from
http://www.falout.com

7.3 Short Intro to x4GL

• 4GL Programs

• Structure of a program

• DATABASE section

• GLOBALS section

• Functions

• MAIN block

• DEFINE section

• 4GL Commands

7.3.1 4GL Programs

A 4GL program consists of a series of modules and forms. Each 4GL module
can contain functions and reports and each program must contain exactly
one ’main’ section and must end in a .4gl extension. C modules can also be
included in programs.

7.3.1.1 Structure of a program

database section

globals section

function/report/main block

.

.

97

7.3. SHORT INTRO TO X4GL CHAPTER 7. 4GL LANGUAGE

.

.

function/report/main block

7.3.1.2 DATABASE section

This section is optional and is of the format :

DATABASE database-name

The database name is actually the DATA SOURCE NAME (DSN) from the
ODBC drivers.

7.3.1.3 GLOBALS section

This optional section allows you to define variables which are accessible to
all modules. There is normally a single file (typically called ’globals.4gl’)
where variables are defined. All other modules which need these variables
then include that file using the GLOBALS statement .eg.
globals.4gl:

GLOBALS
DEFINE a INTEGER
END GLOBALS

module.4gl:

GLOBALS "globals.4gl"

Note: In Aubit 4GL the ’globals’ module (containing the GLOBALS / END
GLOBALS) must be compiled first.

7.3.1.4 Functions

A function in 4GL is a sequence of commands which are executed when
called from another block of code. A function can accept parameters and
can return values.

A function is defined :
FUNCTION function-name (parameter-list)

98

CHAPTER 7. 4GL LANGUAGE 7.3. SHORT INTRO TO X4GL

define-section
commands
END FUNCTION

Values are returned using the RETURN keyword:
RETURN value

7.3.1.5 MAIN block

Each program must contain a main section - it is the starting point in any
program.
MAIN
define-section
commands
END MAIN

7.3.1.6 DEFINE section

This optional section allows you to define variables which may be used
subsequently. In its simplest form:
DEFINE variable_names datatype
or
DEFINE CONSTANT constant_name "Value"
DEFINE CONSTANT constant_name Number-Value

More than one variable can be defined as any type in the same statement
by separating the names with a comma:
DEFINE a,b,c INTEGER

Available datatypes are :
SMALLINT (2 byte integer)
INTEGER (4 byte integer)
CHAR (Single character ’string’)
CHAR(n) (n character string)
MONEY
DECIMAL (These are not fully implemented)
FLOAT (8 byte floating point number - (C double))
SMALLFLOAT (4 byte floating point number - (C float))

99

7.3. SHORT INTRO TO X4GL CHAPTER 7. 4GL LANGUAGE

DATE (date - number of days since 31/12/1899)
DATETIME
INTERVAL
BYTE
TEXT
VARCHAR Unimplemented yet
LIKE tablename.columnname
RECORD LIKE tablename.*
- can only be used when the module has a DATABASE state-
ment. These copy the datatypes directly from the database
either for a simple column, or to generate an entire record (see
below)

Special datatypes are :

ARRAY[n] OF datatype defines an array

RECORD .. END RECORD defines a record structure

ASSOCIATE [CHAR](m) WITH ARRAY[n] of datatype defines an
associative array (hash table).

7.3.1.7 Arrays Syntax:

DEFINE vars ARRAY[n] datatype eg.
DEFINE lv_arr ARRAY[200] OF INTEGER defines an array
of 200 elements each being an integer. Elements of an array are
indexed from 1 to the number of elements specified.
IMPORTANT: No bounds checks are made. Accessing elements
which are outside those defined (i.e. <1 or > n) will result in
an error (Usually a core dump). Eg
LET lv_arr[1]=1
LET lv_arr[200]=200
LET lv_arr[201]=201 # this will cause a program fault!

7.3.1.8 Records

Records are structured groups of data, with the entries separated by com-
mas. Elements within a record are accessed via the syntax: record name ’.’
element name.

100

CHAPTER 7. 4GL LANGUAGE 7.3. SHORT INTRO TO X4GL

7.3.1.8.1 Syntax

DEFINE recordname RECORD
element datatype,
element datatype
...
END RECORD

eg.

DEFINE lv_rec RECORD
elem1 CHAR(10),
elem2 INTEGER
END RECORD

defines a record with two elements. eg.

LET lv_rec.elem1="string1"

Records may also be nested and used in conjunction with arrays. The
following are all therefore valid:

DEFINE lv_record ARRAY[20] OF RECORD
elem1 CHAR(20),
elem2 INTEGER
END RECORD
DEFINE lv_record RECORD
a ARRAY[200] of INTEGER,
b CHAR(20)
END RECORD
DEFINE lv_record RECORD
subrecord1 RECORD
elem1 CHAR(10),
elem2 INTEGER

END RECORD,
subrecord2 RECORD
elem2 DATE

END RECORD
END RECORD

101

7.3. SHORT INTRO TO X4GL CHAPTER 7. 4GL LANGUAGE

7.3.1.9 Associative Arrays

These are an Aubit4GL extension.
Associative arrays allow you to access data from an array using a string as
a subscript rather than an integer. For example:

LET age<�<"bob">�>=40
DISPLAY age<�<"bob">�>

This can be especially useful when dealing with codes and code desciptions:

LET lv_desc<�<"A">�>="Active"
LET lv_desc<�<"I">�>="Inactive"
LET lv_desc<�<"R">�>="Running"
LET lv_desc<�<"D">�>="Deleted"
LET lv_state="A"
.
.
DISPLAY lv_desc<�<lv_state>�>

(This is for illustration, the data would normally be read from a database!)
To define an associate array:
DEFINE name ASSOCIATE [CHAR] (nc) WITH ARRAY [nx] OF datatype
Where nc is the number of characters to use for the index, and nx is the
total number of elements that may be stored.

7.3.1.9.1 Performance Note Internally, associate arrays are stored
using hash tables, for performance reasons always declare ’nx’ much larger
than is actually required. A factor of two is optimum in most cases.
Again the datatype used in this form of array may be a RECORD, ARRAY
etc. Eg.
DEFINE lv_asoc1 ASSOCIATE CHAR(10) WITH ARRAY[10] OF INTEGER
DEFINE lv_asoc3 ASSOCIATE (10) WITH ARRAY[10] OF INTEGER
DEFINE lv_asoc2 ASSOCIATE CHAR(10) WITH ARRAY[10] OF RECORD
element1 CHAR(10),
element2 CHAR(20)
END RECORD

102

CHAPTER 7. 4GL LANGUAGE 7.3. SHORT INTRO TO X4GL

7.3.1.10 Constants

Constants are defined using:
DEFINE CONSTANT name value eg.
DEFINE CONSTANT max_num_vars 30
DEFINE CONSTANT err_string "There is an error"
IF num_vars>max_num_vars THEN
ERROR err_string

END IF
It is also possible to use constants
in any subsequent define sections:
DEFINE CONSTANT num_elems 20
DEFINE lv_arr ARRAY [num_elems] OF INTEGER
IF num_vars<=num_elems THEN
LET lv_arr[num_vars]=1

END IF

You can think of DEFINE CONSTANT statements as being equivalent to
C #define statements (except that you cannot use them to define macros
as you can with C).

7.3.1.11 DEFINE NEW TYPE

As from version 1.2 of Aubit4GL you can define new datatypes with syntax:

DEFINE NEW TYPE mytype typestatement

e.g.

DEFINE NEW TYPE contract RECORD
level smallint,
denomination char(8)

END RECORD
DEFINE mycontract contract
LET mycontract.level = 3
LET mycontract.denomination = ”Spades”

The new type definition saves the programmer the tedium of replicating a
RECORD .. END RECORD definition for instances such as passing records
to functions or reports.

103

7.3. SHORT INTRO TO X4GL CHAPTER 7. 4GL LANGUAGE

7.3.1.12 Packages

The current system allows programs to call shared libraries using the syntax:

call library::function(..)

or

call library.function(..)

(See tools/test/file.4gl or lib/extra_libs/pop/pop_killer.4gl for
some example usage)

You can use a . as a synonym for :: in the above library calls.

Packages take this one step further in that the calls are coded like any other
functions. They are detected at compile time by referencing a list of pos-
sible function name mappings specified by an import package statement.
Syntax :

IMPORT PACKAGE packagename
or
USE packagename

The packagename should be the name of a file in the $AUBITDIR/etc/import
directory.

A file called default exists in this directory which is included for all com-
pilations - this allows you to add calls to your own subroutines just as if
they were builtin functions with no need to add them to the compile line as
object or library modules..

This file should contain a series of lines, each containing:

library functionname

(In this way a package can contain functions from more than one library...)

e.g.

104

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

A4GL_pcre pcre_match
A4GL_pcre pcre_text

Whenever the compiler sees a call to pcre_match it will call pcre_match in
the A4GL_pcre library - in this way it’s equivalent to A4GL_pcre::pcre_match

So a full .4gl may look like :

import package a4gl_pcre
main
if pcre_match("cat|dog","There was an old cat") then

display "Matches to ",pcre_text(1)
else

display "No match"
end if

end main

Compile and run

$ 4glpc pcre_test.4gl -o pcre_test
$./pcre_test
Matches to cat

(Note - you don’t need to link against the library - it’s done at runtime!)

(If you’ve got pcre installed - you can compile up the pcre library by doing
a make in the lib/extra_libs/pcre directory)

7.4 Quick Reference

The material in this section should be the same as the separate document
a4glqref but is typeset differently.

7.4.1 Data Types
ARRAY[m,n,...] OF type
BYTE

105

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

CHAR(n)
CHARACTER(n)
DATE
DATETIME(f TO l)
DEC
DEC(precision)
DEC(precision,scale)
DECIMAL
DECIMAL(precision)
DECIMAL(precision,scale)
DOUBLE PRECISION
DOUBLE PRECISION(precision)
INT
INTEGER
INTERVAL(f TO l)
LIKE table.column
MONEY
MONEY(precision)
MONEY(precision,scale)
NUMERIC
NUMERIC(m)
NUMERIC(m,n)
REAL
RECORD LIKE table.*
RECORD name type ,... END RECORD
SERIAL
SERIAL(n)
SMALLFLOAT
SMALLINT
TEXT
VARCHAR
VARCHAR(max)
VARCHAR(max,min)

Precision = No of significant digits (default 16)
Scale=No or digits after the decimal pt (default 2), can be -ve.

max = number of chars (upper limit 254 for Informix IDS)
min = minimum number of chars.

106

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

Current Engines also support large integers: int8 and serial8.

7.4.2 Constants
TRUE=1
FALSE=0
NOTFOUND=100

7.4.3 Global Variables

Flags: INT_FLAG QUIT_FLAG

Vars: STATUS SQLCA.SQLCODE

SQLCA Record:
SQLCA RECORD
SQLCODE INTEGER,
SQLERRM CHAR(71),
SQLERRP CHAR(8),
SQLERRD ARRAY[6] OF INTEGER,
SQLAWARN CHAR(8)
END RECORD

SQLCA.SQLERRD Array:
SQLERRD[1]:estimated row count
SQLERRD[2]:serial value returned
SQLERRD[3]:no of rows processed
SQLERRD[4]:estimated CPU cost
SQLERRD[5]:error offset
SQLERRD[6]:last rowid processed

Warning: Not all of the above work for all backends. For PostgreSQL they
may need a patched version of the engine.

7.4.4 Syntax Conventions

The remainder of this chapter uses the following conventions to indicate the
syntax of 4GL language constructs

107

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

• KEYWORDS are in UPPERCASE. You enter them literally but in
upper or lower case

• Lower case indicates terms for which you must enter your own identi-
fiers or expressions

• "string" indicates a quoted string. Informix allows either single or
double quotes but non-Informix engines may enforce one or the other.

• string (without quotes) indicates an unquoted string used for example,
in naming cursors, prepared statements, forms, windows, etc.

• m and n are used to denote a numeric value

• "c" denotes any quoted character

• [] and {} delimit options. {} indicates a mandatory option. [] a non-
mandatory toption. Within the [] or {} elements are separated by the
pipe symbol |. e.g. {a|b|c} means you must choose a or b or c.

Expressions in red are Aubit 4GL extensions and will not compile
on Informix, 4J, or other 4GL compilers.

•

• Expressions in green work with Informix SE only.

• Expressions in blue work with Informix IDS only.

• relop means a relational operator (see below)

• expr means an expression

• charexpr means a character expression (e.g. filename || ".4gl")

7.4.5 Operators

Numeric: + - * / ** mod

String: , [m,n] || USING "string" CLIPPED

Relational: = <> != >= < <=

108

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

Boolean: expr relop expr
charexp LIKE charexpr
charexpr LIKE charexpr ESCAPE "c"
charexp NOT LIKE charexp
charexp NOT LIKE charexp ESCAPE "c"
charexpr MATCHES charexpr
charexpr NOT MATCHES charexpr ESCAPE "c"
charexpr MATCHES charexpr
charexpr NOT MATCHES charexpr ESCAPE "c"
expr IS NULL
expr IS NOT NULL
boolexpr AND boolexpr]
boolexpr OR boolexpr
NOT boolexpr

7.4.6 Aubit4GL Operators

[NOT] IN ({expr [,...]
|selectstatement})

[NOT] EXISTS (selectstatement)

7.4.7 Attribute Constants

An attlist is a set of the following elements:

BLACK, WHITE, RED, GREEN, BLUE,
MAGENTA, CYAN, YELLOW,
REVERSE,DIM, BOLD, BLINK, INVISIBLE,
BORDER, UNDERLINE

7.4.8 Key Constants

A keylist is a set of the following elements:

109

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

F1 to F64
CONTROL-c (but c not in (A,D,H,I,
K,L,M,R,X)

ACCEPT, DELETE, DOWN, ESC, ESCAPE,
HELP, INSERT, INTERRUPT, LEFT,
RIGHT, NEXT, NEXTPAGE, PREVIOUS,
PREVPAGE, RETURN, TAB, UP

7.4.9 Table Privileges
ALTER, INDEX, DELETE, INSERT,
SELECT[(colname ,...)]
UPDATE[(colname ,...)

7.4.10 Comments

Characters on a line after the following are ignored by 4GL compilers:

– ANSI SQL Standard for commenting out rest of line
Unix convention for commenting out rest of line

Curly braces are used to comment out lines of code (not nestable):

{ ... } Compiler ignores everything between the braces
{! ... !} Aubit 4GL compiles the enclosed code. Informix 4GL

ignores it.

7.4.11 4GL Statement Syntax
ALLOCATE ARRAY name[size] #[and] literal here
ALLOCATE ARRAY dynname[rows, cols]
ALLOCATE ARRAY dynname[panes, rows, cols]
ALTER INDEX indexname TO [NOT] CLUSTER
ALTER TABLE tablename
{ADD (newcolname newcoltype

[BEFORE old-colname][,...])
|DROP (oldcolname[,...])
|MODIFY (oldcolname newcoltype [NOT NULL]
[,...])

110

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

}[,...]

AT TERMINATION CALL function ([args])

BEGIN WORK
statement ...
{COMMIT WORK | ROLLBACK WORK}

CALL [packet {::|.}] function([COPYOF][arg][,...])
[RETURNING arglist]

CASE [(expr)]
WHEN {expr | booleanexpr }
statement
...
[EXIT CASE]

...
[OTHERWISE]
...
[EXIT CASE]
...

END CASE
CLEAR {SCREEN |WINDOW windowname

|WINDOW SCREEN
|FORM

[TO DEFAULTS]

|fieldlist }
CLOSE cursor
CLOSE DATABASE
CLOSE FORM

CLOSE SESSION name
CLOSE STATUSBOX name

CLOSE WINDOW name

111

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

CODE
Cstatement;
...
ENDCODE

COMMIT WORK

CONNECT TO name

CONSTRUCT {BY NAME charvar ON collist
|charvar on collist FROM { fields

| screenrecord[[n]].*} [,...]}
[[{BEFORE|AFTER} CONSTRUCT statements]
[,...]
[{BEFORE|AFTER} FIELD field statements]
[,...]

VIA viafunc

{ON KEY (keylist)
statement
...
[{EXIT|CONTINUE} CONSTRUCT]

...]
END CONSTRUCT]
CONTINUE CONSTRUCT
CONTINUE DISPLAY
CONTINUE FOR
CONTINUE FOREACH
CONTINUE INPUT
CONTINUE MENU
CONTINUE PROMPT
CONTINUE WHILE

CONVERT REPORT convrepname TO
{"filename"|PIPE program|PRINTER|[E]MAIL}
AS {"SAVE"|"PDF"|"CSV"|"TXT"}

112

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

CREATE AUDIT FOR tabname in "pathname"
CREATE [UNIQUE|DISTINCT][CLUSTER] INDEX
indname ON tabname(colname [ASC|DESC]

[,...])
CREATE DATABASE {name| charvar}

[WITH LOG [IN path]]
CREATE SCHEMA AUTHORIZATION
CREATE PRIVATE SYNONYM
CREATE PUBLIC SYNONYM
CREATE SYNONYM name FOR tabname
CREATE TABLE
CREATE [TEMP] TABLE name

(colname coltype [NOT NULL][,...])
CREATE DISTINCT CLUSTER INDEX
CREATE VIEW
CURRENT WINDOW IS name
CURRENT WINDOW SCREEN
CURRENT WINDOW IS SCREEN
DATABASE name [EXCLUSIVE]
DEALLOCATE ARRAY name
DECLARE name [SCROLL] CURSOR FOR
{select_statement
[FOR UPDATE OF collist

|insert_statement
|statementid}

DEFER INTERRUPT
DEFER QUIT
DEFINE varlist datatype [,...]

DEFINE CONSTANT id {"string"|number}
DEFINE linkid LINKED TO tabname PRIMARY KEY (colname)
DEFINE name ASSOCIATE [CHAR](n)

with ARRAY[m] OF datatype
DEFINE NEW TYPE id datatype

DELETE FROM tabname
[WHERE {condition|CURRENT OF cursor}]

DELETE USING linkid

113

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

DISABLE FORM name
DISPLAY {BY NAME varlist
| varlist TO {fieldlist|screenrec[[n]].*}

[,...]
| AT screenrow,screencol]}

[ON KEY (keylist)
statement
...
[EXIT DISPLAY]

...
END DISPLAY]

DISPLAY ARRAY id
[SLICE (field1 {THROUGH|THRU} field2)]
TO screenarray.*
[ATTRIBUTE[S](attlist |

[INSERT|DELETE ROW =[=] {TRUE|FALSE}]
[UNBUFFERED]
[CURRENT ROW =[=] expr
[[MAX]COUNT =[=] n]
[REVERSE|colour

)]
{[ON CHANGE field]|
[ON {IDLE|INTERVAL} n {HOURS|MINUTES|SECONDS}]|
[ON ACTION id]|
[ON ANY KEY]|

[ON KEY (keylist)]
statement
...
[EXIT DISPLAY]

...
[END DISPLAY]}

DISPLAY FORM name [ATTRIBUTE(attlist)]
DROP AUDIT FOR tabname
DROP DATABASE {name | charvar}
DROP INDEX name
DROP SYNONYM name

114

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

DROP TABLE name
DROP TRIGGER name
DROP VIEW name
ENABLE FORM form
ERROR displaylist [ATTRIBUTE (attlist)]
EXECUTE [IMMEDIATE] statementid
EXIT CASE
EXIT CONSTRUCT
EXIT DISPLAY
EXIT FOR
EXIT FOREACH
EXIT INPUT
EXIT MENU
EXIT PROGRAM [expr]
EXIT PROMPT
EXIT REPORT
EXIT WHILE
FETCH [NEXT

|PREVIOUS|PRIOR|FIRST|LAST
|CURRENT|RELATIVE n
|ABSOLUTE n]

cursorname [INTO varlist]
FINISH REPORT name

FINISH REPORT name
CONVERTING TO {{"filename"|EMAIL|}
[AS {"SAVE"|"PDF"|"CSV"|"TXT"|MANY}
[USING "filename" AS LAYOUT]}

FLUSH cursor

FONT SIZE n

FOR var = expr TO expr [STEP expr]
{statement|CONTINUE FOR|EXIT FOR}...
END FOR

FOREACH cursor [INTO varlist]
[statement|CONTINUE FOREACH|EXIT FOREACH]...
END FOREACH

115

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

FREE {statementid|cursor|blobvar}

FREE REPORT name

FUNCTION function([[COPYOF] arg] [,...]})
[definestatement]...
statement ...
END FUNCTION

GO TO label
GOTO label
GRANT {tabpriv ON tabname

| CONNECT|RESOURCE|DBA }
TO {PUBLIC|userlist}

HIDE OPTION name
HIDE WINDOW name
IF boolexpr THEN
statement
...
[ELSE
statement
...]

END IF]

IF boolexpr THEN
statement
...
[ELIF|ELSIF
statement
...]

...
[ELSE
statement
...]

END IF]
IGNORE ERRORS (n [, ...]) FOR 4glstatement
IMPORT PACKAGE name

INITIALIZE varlist
{LIKE collist| TO NULL}

116

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

INPUT ARRAY array
SLICE(field1 THROUGH|THRU field2)
[WITHOUT DEFAULTS]
FROM screenarray.* [HELP n]

[ATTRIBUTE[S](
[INSERT|DELETE ROW =[=] {TRUE|FALSE}]
[UNBUFFERED]
[CURRENT ROW =[=] expr
[[MAX]COUNT =[=] n]
[REVERSE|colour

] [, ...])

[{BEFORE {ROW|INSERT|DELETE|FIELD list}
[,...]
|AFTER {ROW|INSERT|DELETE|FIELD list|

INPUT}[,...]
|ON KEY (keylist)}

[ON CHANGE field
[ON {IDLE|INTERVAL} n {HOURS|MINUTES|SECONDS}]|
[ON ACTION id]|
[ON ANY KEY]

statement
...
[NEXT FIELD field]
...
[EXIT INPUT]
...

...
END INPUT

INSERT INTO tabname[(collist)]
{VALUES(vallist)| selectstatemet}

117

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

INSERT USING linkid

LABEL name :
MESSAGE displaylist [ATTRIBUTE (attlist)]
LABEL label-name :
LET id = expr

LET hasharray<�<"code">�> = "string"

LOAD FROM filename INSERT in tabname [(collist)]

LOAD FROM filename
[USING FILTER filtfunc]

INSERT in tabname [(collist)]

LOCATE varlist in {MEMORY|FILE [filename]}
LOCK TABLE name IN {SHARE|EXCLUSIVE} MODE
MENU "name"

COMMAND {KEY (keylist)
| [KEY (keylist)] "option"

[HELP n]}
statement
...
[CONTINUE MENU]
...
[EXIT MENU]
...
[NEXT OPTION "option"]
...

...
[ON KEY (keylist)
statement
...
CONTINUE MENU]
...
[EXIT MENU]
...
[NEXT OPTION "option"]
...]

118

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

END MENU

MENU name
{OPTION opt [IMAGE="path/name.xpm"] "Label"
|SUBMENU subname "[_]Label"
{USE menu
|{statement,...
END SUBMENU}}

| statement
,...}

END MENU
MESSAGEBOX message

MOVE WINDOW
NEXT FIELD "fieldname"
NEXT FORM NEXT OPTION "optname"
OPEN cursor [USING varlist]
OPEN FORM name FROM "filename"
OPEN SESSION id TO DATABASE db

[USING user [PASSWORD pwd]]
OPEN STATUSBOX name
OPEN WINDOW name AT row, col

WITH {r ROWS, c COLUMNS
| FORM "file"}

[ATTRIBUTE(attlist)]
OPTIONS {MESSAGE LINE line

|PROMPT LINE line
|COMMENT LINE line
|ERROR LINE line
|FORM LINE line
|INPUT {[NO] WRAP}
|INSERT KEY key
|DELETE KEY key
|NEXT KEY key
|PREVIOUS KEY key
|ACCEPT KEY key
|HELP FILE "file"
|HELP KEY key

119

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

|INPUT ATTRIBUTE(attlist)
|DISPLAY ATTRIBUTE (attlist)}
[,...]

OUTPUT TO REPORT name(exprlist)
PREPARE id from "charexpr"
PROMPT displaylist FOR [CHAR] var
[HELP n]
[ON KEY (keylist)
statement
...

...
END PROMPT]

PUT cursor FROM varlist
RECOVER TABLE name
RENAME DATABASE name TO newname
RENAME COLUMN table.oldcol TO newcol
RENAME TABLE oldname TO newname
RESIZE ARRAY name, size
RETURN exprlist
REVOKE { tabpriv ON tabname

| CONNECT | RESOURCE | DBA}
FROM {PUBLIC | userlist

ROLLBACK WORK
ROLLFORWARD DATABASE name
RUN command [RETURNING n

|WITHOUT WAITING]

RUN program WAITING FOR expr
[WITH {MESSAGE|ERROR}] expr

RUN program {WAIT|EXIT}
RUN CLIENT progname
SCHEMA dbname

SCROLL {fieldlist| screenrec.*}[,...]
{UP|DOWN}[BY n]

SELECT sellist [INTO varlist] FROM collist
[joinclause] [fromclause]
[groupclause [havingclause]]
[orderclause]

120

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

SELECT USING linkid

SET BUFFERED LOG
SET CONSTRAINTS ALL IMMEDIATE
SET CURSOR
SET EXPLAIN OFF
SET EXPLAIN ON
SET ISOLATION TO COMMITTED READ
SET ISOLATION TO CURSOR STABILITY
SET ISOLATION TO DIRTY READ
SET ISOLATION TO REPEATABLE READ
SET LOCK MODE TO NOT WAIT
SET LOCK MODE TO WAIT
SET LOG
SET PAUSE MODE OFF
SET PAUSE MODE ON
SET SESSION TO name

SET SQL DIALECT TO "{INFORMIX|ORACLE|...}"

SHOW OPTION "optname"
SHOW WINDOW name
SLEEP n

SORT array USING sortfunc [limit n]

SQL [WITH[OUT] CONVERSIONS]
sqlstatement [,...] END SQL

START EXTERNAL FUNCTION

START REPORT name
[TO {"filename"|PIPE program|PRINTER}]

[WITH [TOP|BOTTOM|LEFT|RIGHT MARGIN n ... | PAGE
LENGTH n]

121

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

STOP ALL EXTERNAL

START DATABASE identifier WITH LOG IN "..."
[MODE ANSI]

START REPORT name
[TO {file|PIPE program|PRINTER

|

CONVERTIBLE

}]
|

[[WITH TOP|BOTTOM|LEFT|RIGHT MARGIN]... |PAGE
LENGTH n]

TERMINATE REPORT

UNLOAD TO filename selectstatement
UNLOCK TABLE name
UPDATE tabname SET

{colname = expr [,...]
|{(collist}|table.*|*}=

{(exprlist)| record.*}}
[WHERE {condition|CURRENT of cursor}

UPDATE STATISTICS
UPDATE STATISTICS FOR TABLE name

UPDATE USING linkid
USE packagename
USE SESSION name

VALIDATE var LIKE collist
WHILE boolean

[statement| EXIT WHILE | CONTINUE WHILE]...
END WHILE

122

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

7.4.12 Report Syntax
REPORT repname(arglist)
definestatement ...

[OUTPUT
[REPORT TO
{file|PIPE program|PRINTER}]

[LEFT MARGIN n]
[RIGHT MARGIN n]
[TOP MARGIN n]
[BOTTOM MARGIN n]
[PAGE LENGTH n]

[ORDER [EXTERNAL] BY sortlist]
FORMAT
{ EVERY ROW
| {[FIRST] PAGE HEADER

|PAGE TRAILER
|ON EVERY ROW
|ON LAST ROW
|{BEFORE|AFTER} GROUP OF argvar}
statement
...
[...]}

END REPORT

7.4.13 Report Statement Syntax
NEED n LINES
PAUSE "string"
PRINT [[exprlist][;]| FILE "filename"]
SKIP {expr LINE[S]| TO TOP OF PAGE}

7.4.14 Report Expressions
COLUMN expr
[GROUP]{COUNT(*)|PERCENT(*)

|{SUM|AVG|MIN|MAX}(expr)}
[WHERE expr]}

DATE

123

7.4. QUICK REFERENCE CHAPTER 7. 4GL LANGUAGE

LINENO
PAGENO
TIME
WORDWRAP

7.4.15 PDF Report Syntax

PDF reports are an Aubit 4GL extension.

• r, g, b are values between 0.0 and 1.0 for red, green, blue

• TOP variants of LINE TO etc, put origin for x.y at top left. (PDF
usually has origin at bottom left.)

nval means an numeric expr followed by 1 of the following units:

POINTS, INCHES, MM, or nothing (which means char spaces). Ex-
ample: 2.54 mm

PDFREPORT name(arglist)
definestatement ...

[OUTPUT
[REPORT TO
{file|PIPE program|PRINTER}]

[LEFT MARGIN nval}
[RIGHT MARGIN nval]
[TOP MARGIN nval]
[BOTTOM MARGIN nval]
[PAGE LENGTH nval]

[ORDER [EXTERNAL] BY sortlist]
FORMAT
{ EVERY ROW
| {[FIRST] PAGE HEADER

|PAGE TRAILER
|ON EVERY ROW
|ON LAST ROW

124

CHAPTER 7. 4GL LANGUAGE 7.4. QUICK REFERENCE

|{BEFORE|AFTER} GROUP OF argvar}
statement| pdfstatement
...
[...]}

END PDFREPORT

7.4.15.1 PDF Report Expressions

COLUMN nval
reportexpression

7.4.15.2 PDF Statements

PRINT IMAGE blobvar AS
"{GIF|PNG|TIFF|JPEG}"
[SCALED by x.n, y.n}

PRINT IMAGE "filename"
SKIP {BY|TO} nval
BOOKMARK expr [,expr] [RETURNING index]
PRINT BARCODE [NO TEXT] [AT x, y] [WIDTH w HEIGHT h]
SET BARCODE TYPE {"2"|"5"|"8"|"13"|"25"|"39"|"QR"}
SET BARCODE TYPE {"128A"|"128B"|"128C"}
FILL
FILL STROKE
LINE TO [TOP] y, x
MOVE TO [TOP] y, x
SET COLOR r, g, b #all 0-1
SET FILL COLOR r, g, b
SET FONT NAME name
SET FONT SIZE n
SET PARAMETER name, value
SET STROKE COLOR r, g, b
STROKE
CALL PDF_FUNCTION(arglist)

125

7.5. BUILTIN FUNCTIONS CHAPTER 7. 4GL LANGUAGE

7.4.15.3 PDF_FUNCTION arglists

There are many libpdf functions. For a full list look at the PDFlib docu-
mentation. Here is an example:

"set_parameter", "{underline|...}", "{true|false|...}"

Note: Font names are case sensitive.

7.5 Builtin Functions

Informix 4GL has a set of 40 or more functions built in to the language.
Aubit4GL implements all of these.

Aubit4gl also implements a few functions to make the compiler compatible
with programs written for D4GL.

Finally Aubit4GL has added some builtins of its own to allow you to ex-
ploit Aubit4GL’s special features such as GUI interfaces, different database
engines, etc.

7.5.1 Standard 4GL Builtin Functions

The following functions in 4GL work in Aubit4GL:

126

CHAPTER 7. 4GL LANGUAGE 7.5. BUILTIN FUNCTIONS

Function Comment
arg_val(n) returns a string
arr_count() returns smallint
arr_curr() returns smallint
downshift(s) returns string with chars

downshifted to lowercase
err_get(n) returns a string
err_print(n) displays a string
err_quit(n) displays a string then exits
errorlog(s) logs message s to logfile
fgl_drawbox(h, w, y, x [,clr])
fgl_getenv(s) returns string
fgl_keyval(s) returns integer code
fgl_lastkey() returns integer code
length(s) returns smallint
num_args() returns smallint
scr_line() returns smallint
set_count(n)
showhelp(n) displays help message n
sqlexit(n) returns 0, after closing connec-

tion to database
startlog(s)
upshift(s) returns string with chars up-

shifted to uppercase

7.5.2 Standard 4GL Operators

The following functions are described by Informix 4GL as builtin operators.
They work in Aubit4GL:

127

7.5. BUILTIN FUNCTIONS CHAPTER 7. 4GL LANGUAGE

Operator Comment
ascii(n) returns a char,

e.g. ascii(64) returns ’A’
date(s) returns a date
date returns a string

e.g. Wed Aug 15 2006
day(d) returns 1..31
extend(d or dt, format) returns a date or datetime
field_touched(rec.field) returns TRUE or FALSE
get_fldbuf(rec.field) returns string contents of field
hex(n) returns string e.g. 0x0000001c
in()
infield(rec.field) returns TRUE or FALSE
mdy(m,d,y) returns date from args month,

day, year
month(d or dt) returns 1:12
ord(c) returns smallint
time returns string
today returns date
year(date) returns smallint

128

CHAPTER 7. 4GL LANGUAGE 7.5. BUILTIN FUNCTIONS

7.5.3 D4GL Builtin Functions

The following are do-nothing functions which allow 4J’s D4GL programs to
compile:

Function Comment
ddeconnect()
ddeexecute()
ddefinish()
ddefinishall()
ddegeterror()
ddepeek()
ddepoke()

129

7.5. BUILTIN FUNCTIONS CHAPTER 7. 4GL LANGUAGE

7.5.4 Aubit Builtin Functions
Function Return Values
_variable(name) pointer to object (e.g. cursor,

form, window, etc)
abs(n) absolute value of n
a4gl_get_info("o","id","p") See below
a4gl_get_page()
a4gl_get_ui_mode() 0|1 (0=TUI, 1=GTK)
a4gl_run_gui()
a4gl_set_page()
a4gl_show_help(n)
dbms_dialect() "INFORMIX"|"POSTGRES"|...
fgl_buffertouched(s) TRUE|FALSE
fgl_dialog_get_buffer() string
fgl_dialog_getfieldname() string
fgl_dialog_setbuffer(value)
fgl_dialog_setcurrline(n)
fgl_dialog_setkeylabel("key","label")
fgl_getkey_wait(n)
fgl_setkeylabel("key","label")
fgl_prtscr()
fgl_scr_size(srec) returns int
fgl_set_arr_line(n)
fgl_keysetlabel("key","label")
fgl_set_scrline(n)
fgl_strtosend(s) returns string
fgl_winmessage(s)
load_datatype(s)
set_window_title(s)
sqrt(n) returns square root of n
winexec(s)
winexecwait(s)

7.5.5 a4gl_get_info()

Synopsis: a4gl_get_info("object", "id", "property")
where "object" in ("Form"|"Window"|"Connection"|"Statement")

130

CHAPTER 7. 4GL LANGUAGE 7.5. BUILTIN FUNCTIONS

and "id" is the quoted variable name of instance of the object
and property is an element of the set of properties of the object as
follows:

In the properties below, replace the % with a value 1 .. maxelement.

7.5.5.1 Connection

Synopsis: a4gl_get_info("Connection", "", "Database")

Database in the only property available. The id argument is ignored.

7.5.5.2 Form

Form Property Return Value
Database char
Delimiters char
ScreenRecordCount int
ScreenRecordName% int
AttributeCount int
CurrentField int
Width int
Height int
Field% long?
ScreenName% char
TableName% char
AliasName% char
FieldType% char
FieldSize int
FieldBytes int
FieldDets long
Screens long

131

7.5. BUILTIN FUNCTIONS CHAPTER 7. 4GL LANGUAGE

7.5.5.3 Statement

Atatement Property Return Value
NoColumns int
NoRows int
Name% char
Type% char
Scale% int
Nullable% int
Length% int

7.5.5.4 Window

Window Property Return Value
Height int
Width int
BeginX char
BeginY char
Border int
Metrics int,int,int,int (x, y, h, w)

132

CHAPTER 7. 4GL LANGUAGE 7.5. BUILTIN FUNCTIONS

7.5.6 aclfgl_ Builtins

7.5.6.1 Procedures

These do not return values. Prefix them with aclfgl_
e.g. call aclfgl_client_set()

Procedure (prefixed: aclfgl_)
call_in_shared(lib, func)
client_execute(string)
client_set()
delete_file(filename)
dump_screen(string, h,w,y,x)
expand_env_vars_in_cmd_line()
flush_inp()
flush_ui()
sendfile_to_ui(filename)
send_to_ui(string)
set_color(c, r,g,b)
setenv(varname, value)
set_pdf_encoding(encoding)

7.5.6.2 Functions

These all return values. Prefix with aclfgl_
e.g. LET random=aclfgl_random(13)

133

7.6. FORM SYNTAX CHAPTER 7. 4GL LANGUAGE

Function (prefixed: aclfgl_) Returns
file_exists(filename) true|false
getclientfile() various?
get_connection_username() name
get_construct_element(tab,col,t,l) value
get_curr_height() h
get_curr_width() w
getcwd() dirname
get_pdf_encoding() encoding
get_sql_requirement string
get_stack_trace() trace
get_user() name
parse_csv(line) several?
random(n) random%n
read_pipe(command) output
replace_in_string(str, repl, with) string
replace_start(string, with, start) string
split_on_delimiter(line) lines
tea_string_decypher(code) string
tea_string_encypher(string) code
text_as_str(text) string
trim_nl(string) string

get_error_details() returns

1. lineno INTEGER

2. ModuleName CHAR(255)

3. Message CHAR(255)

4. State INTEGER

See under Aubit4GL Extensions

7.6 Form Syntax
DATABASE

{database|FORMONLY}[WITHOUT NULL INPUT]

134

CHAPTER 7. 4GL LANGUAGE 7.6. FORM SYNTAX

SCREEN
{

text[tag]
...

}
[TABLES name [,...]]
ATTRIBUTES
tag=tagdescr
...

[INSTRUCTIONS
[DELIMITERS "fl"
[SCREEN RECORD name[[n]]
({tablename.*
| tabname.colname THRU tabname.colname
| tabname.colname}[,...])]]

In the SCREEN statement, the {} and [] are literal and do not indicate
optional syntax.

7.6.1 Tag Description
tag=[table.]column[, attrlist];
tag=FORMONLY.field

[TYPE [type|LIKE table.col]]
[NOT NULL][, attrlist];

A tag’s attrlist is a set of values:

AUTONEXT, COLOR=color [WHERE boolean],
COMMENTS="string", DEFAULT="value",
DISPLAY LIKE "table.col", DOWNSHIFT,
FORMAT="string", INCLUDE=(list),
NOENTRY, PICTURE="string", PROGRAM="name",
REQUIRED, REVERSE, UPSHIFT, VERIFY,
VALIDATE LIKE table.col, WORDWRAP [COMPRESS],
DYNAMIC SIZE=n

135

7.7. VDC FORMS CHAPTER 7. 4GL LANGUAGE

7.6.2 Aubit 4GL GUI Attributes

The following Widgets can be used in an Aubit4GL GUI form (runnable
only under GUI or HL_GTK)

tag=FORMONLY.field,
WIDGET={BUTTON|CHECK|COMBO|ENTRY

|DEFAULTS|LABEL|PIXMAP|RADIO
|TEXT} [CONFIG="guiattr=’value’ [;...]"]

Each widget may or must be given a set of GUI attributes:

BUTTON [CONFIG="LABEL=’label’"| "IMAGE=’file.xpm’"]
CHECK [CONFIG="LABEL=’label’" ; "VALUE=’value’"]
COMBO {CONFIG="LIST=item1,item2[,...]}
ENTRY [CONFIG="MAXCHARS=n"]
DEFAULT [CONFIG="MAXCHARS=n"]
LABEL {CONFIG="CAPTION=’string’"}
PIXMAP {CONFIG="IMAGE=’file.xpm’"}
RADIO {CONFIG="NUM=n; L1="label1";V1="value2" ;

L2="label2"; V2=value2;
...
Ln="labeln"; Vn=valuen}

TEXT [CONFIG="MAXCHARS=n"]
any [CONFIG="WIDTH=xchars;HEIGHT=ylines"]

7.7 VDC Forms

Replace SCREEN with LAYOUT. Format is:
LAYOUT container [tag][(attributes) [...] END

Containers can be any of HBOX, VBOX, FOLDER, PAGE, GRID, TABLE.
and may be nested.

Example:

136

CHAPTER 7. 4GL LANGUAGE 7.8. CALLBACKS

LAYOUT
VBOX Sales
GRID Order (BORDER)
{

[o001]
...

}
TABLE Items (BORDER)
{
[i001] [1002] ... [i00n]
...

}
END

VDC Widgets
EDIT Default - normal 1 line edit field
BUTTON
BUTTONEDIT Edit with a button
CHECKBOX
COMBOBOX ITEMS=(”Mr”, ”Mrs”, ”Ms”)
DATEDIT Buttonedit + calendar
IMAGE
LABEL
PROGRESSBAR
TEXTEDIT Multiline Textfield
WEBVIEW Browser Widget

7.8 Callbacks

viafunc() takes 4 arguments: (tabname, colname, type, length) and re-
turns TRUE or FALSE

sortfunc() takes 2 array arguments: (COPYOF ar1, COPYOF arr2) DEFINEd
same as each row of the array to be sorted and returns -1 or 0 or +1
meaning less than, equal to, or greater than respectively.

137

7.8. CALLBACKS CHAPTER 7. 4GL LANGUAGE

filterfunc() takes a string argument and returns a row of column values
(for inserting into a table)

138

Chapter 8

Help system

8.1 Help message source file

Create your help files with a .msg extension using a text editor (e.g. vi)
A sample file:

.1
This is help message 1
.2
This is help message 2

8.2 Compiling help files

The syntax for compiling a help file (say myhelp.msg) into a binary help
file (say myhelp.iem) is:
amkmessage myhelp.msg myhelp.iem
or
amkmessage myhelp.msg > myhelp.iem

Note that the syntax here is inconsistent with fcompile in that you must
supply the name (including suffix) of the target binary file. This is consistent
with Informix’s mkmessage program which has the same syntax.

139

8.3. HELP IN PROGRAMS CHAPTER 8. HELP SYSTEM

8.3 help in programs

8.3.1 Within 4GL

CALL showhelp(3)

will display message number 3 from the current helpfile on the screen help
line.

8.3.2 At runtime

The user presses the help key (default = CTRL-W) in any implemented
command (Currently only menus have help support)

8.4 Decompiling

The command unmkmessage can be used to decompile an Informix compiled
help file (usually with a .iem suffix) as follows:

unmkmessage myhelp.iem myhelp.msg

or

unmkmessage myhelp.iem > myhelp.msg

If you omit the 2nd filename, the unmkmessage program will output to the
standard output stream (by default , your screen).

The unmkmessage program is useful when you lose or corrupt the source
helpfile but still have the original binary.

8.5 Compatibility

The helpfile compiled by amkmessage is the same format as the IBM-
Informix mkmessage program and the helpfiles will be compatible both
source and binary.

140

CHAPTER 8. HELP SYSTEM 8.6. MKMESS

8.6 mkmess

Note that amkmessage replaces the mkmess program used by earlier versions
of Aubit 4GL. The 2 programs are incompatible. The older mkmess created
binaries of a different format from the standard Informix .iem files.

141

8.6. MKMESS CHAPTER 8. HELP SYSTEM

142

Chapter 9

SQL Conversion

Aubit4GL allows you to connect to DBMSes (database management sys-
tems) from various vendors, as long the connection is via the SQL command
language. Unfortunately, the syntax of the SQL language can differ consid-
erably from one vendor to another, and often valid syntax for one DBMS
fails when executed against some other DBMS. One way around this is to
maintain different versions of your application, eg. one for use with Infor-
mix, another for running against Oracle, another for PostgreSQL, and so
on. Another way is to replace each SQL command in your source code with
a number of alternatives in a case statement, depending on the target data-
base type. Either way, your code will be difficult to maintain and harder to
read.

Aubit4GL resolves this by providing a module that lets you write code using
just one version or "dialect" of SQL, and have this converted into the correct
form for whatever database you connect to at run-time.

In order to do this, Aubit4GL needs to know the following:

• the source SQL dialect that your source code is written in

• the target SQL dialect expected by the currently connected DBMS

• rules on how to convert SQL commands between source and target
forms.

143

9.1. SOURCE SQL DIALECT CHAPTER 9. SQL CONVERSION

9.1 Source SQL dialect

By default, the compiler assumes SQL is written using standard Informix
syntax.

This can be changed by setting the environment variable A4GL_SQLDIALECT,
or by setting the value of SQLDIALECT in the /etc/opt/aubit4gl/aubitrc file.

You can also change it at run-time using the SET SQL DIALECT command
eg.
SET SQL DIALECT TO ORACLE

This will cause all subsequent statements to be treated as if they were
written using Oracle syntax.

Note - the 4GL compiler is not guaranteed to handle commands using non-
Informix syntax. If the compiler cannot understand a particular command,
simply place it in a char variable (string), PREPARE it, and EXECUTE it.

9.2 Target SQL dialect

The database connection driver will inform Aubit4GL at run-time which
dialect of SQL it speaks, so you do not have to configure this explicitly.

9.3 Configuration files

The syntax of an SQL command is converted from its source dialect to the
DBMS’ native dialect, by applying a number of transformations one after
another on the SQL text.

For example, consider the steps taken to get the following Informix SQL
statement to run correctly with PostgreSQL:

select last_name, first_name[1], (today-birthday)/365 age
from client
where last_name matches "M*"

144

CHAPTER 9. SQL CONVERSION 9.4. CONVERTING SQL

1. replace double quotes with single quotes

2. replace matches with the regular expression operator ~

3. use the function substr() instead of subscripting with []

4. replace the word today with date(now())

5. insert the word "AS" before the column alias age

The result is:

select last_name, substr(first_name,1,1), (date(now())-birthday)/365 AS age
from client
where last_name ~ ’^M.*’

Special configuration files are used to indicate what conversions are needed.

They are located in the directory /opt/aubit4gl/etc/convertsql (this can
be changed by setting the environment variable A4GL_SQLCNVPATH to an
alternative location).

There is one file for each combination of source and target dialect, each file
being named as source-target.cnv. For example, the rules for translating
from Informix to PostgreSQL are in a file called INFORMIX-POSTGRESQL.cnv,
in which the conversion rules for the above example are given as:

DOUBLE_TO_SINGLE_QUOTES
MATCHES_TO_REGEX
SUBSTRING_FUNCTION = substr
REPLACE today = date(now())
COLUMN_ALIAS_AS

9.4 Converting SQL

Many 4GL programmers keep script files of SQL commands to be run
through SQL command interpreters like isql, psql, etc., rather than via
a 4GL program.

145

9.5. CONVERSION SYNTAX CHAPTER 9. SQL CONVERSION

A command line utility, convertsql is available to convert these as well.

You may have to compile this program from source. Go to /opt/aubit4g/tools/convertsql,
and follow the instructions in README.txt.

For example, to convert a file full of Informix SQL commands into SapDB
compatible commands, you might execute:

convertsql INFORMIX SAPDB < mystuff.sql > mystuff2.sql

9.5 Conversion Syntax

The file contains a series of conversion directives, one to a line, with the
following formats:

9.5.1 Simple directives

Simple directives take no arguments:

• DOUBLE_TO_SINGLE_QUOTES Change double quotes (") to single
quotes (’) around literal strings.

• MATCHES_TO_LIKE Change Informix_style ’matches’ clause to
one using ’like’, and change * and ? to % and _ respectively. eg:
matches ’X?Z*’ -> like ’X_Z%’

• MATCHES_TO_REGEX Similar to ’matches-to-like’ but uses the
Postgres style regular expression syntax, eg: matches ’X?Z*’ -> ~
’^X.Z.*’

• TABLE_ALIAS_AS Insert the word "as" before table alias names in
a ’from’ clause eg: from ..., table1 t1, ... -> from ..., table1 as t1, ...

• COLUMN_ALIAS_AS Insert the word "as" before column/expression
alias names in a ’select’ clause eg: select ..., sum(amount) amt, ...->
select ..., sum(amount) as amt, ...

• ANSI_UPDATE_SYNTAX Convert Informix-style "update ... set
(..,..) = (..,..) " to the ANSI standard format "update ... set ...=...,
...=... " eg. update mytable set (col1,col2,col3) = ("01", "X", 104)

146

CHAPTER 9. SQL CONVERSION 9.5. CONVERSION SYNTAX

where ...->update mytable set col1="01", col2="X", col3=104 where
...

• CONSTRAINT_NAME_AFTERMove the constraint name in a con-
straint command to after the constraint definition, eg: ... constraint
c_name unique ->... unique constraint c_name

• CONSTRAINT_NAME_BEFORE Move the constraint name in a
constraint command to before the constraint definition, eg: ... unique
constraint c_name -> ... constraint c_name unique

9.5.2 Complex Directives

The following directive takes an argument (in the rules below, replace the
word "string" with the appropriate values):

• SUBSTRING_FUNCTION= string Change Informix-style string sub-
scripting to a function call, Replace ’string’ with the name of the sql
function. eg. where ... foo[3,5] = -> where ... substr(foo,3,3)

9.5.3 REPLACE directives

Search and replace is not case-sensitive. For legibility, lower case is used in
the rules for search/replace strings to distinguish them from the keywords
(in upper case).
You may leave the replacement string (after the = sign) blank. This will
have the effect of removing the matched string from the converted output.

• REPLACE before = after Replace any occurrence of the string ’before’
with ’after’, eg.
REPLACE rowid = oid
REPLACE current year to second = sysdate
REPLACE today = date(now())

• REPLACE_EXPR before = after Replace only if the ’before’ text is
found in an expression or where an expression is allowed, such as in a
where clause or a select clause. eg.
REPLACE_EXPR sysdate = current year to second
REPLACE_EXPR today = date(now())

147

9.5. CONVERSION SYNTAX CHAPTER 9. SQL CONVERSION

• REPLACE COMMAND before = after Replace, but only if the whole
SQL statement matches the ’before’ string eg.
REPLACE_COMMAND set isolation to dirty read =

The example above has the effect of completely erasing the command.

Full list of available settings :

ADD_CASCADE

ADD_SESSION_TO_TEMP_TABLE

ANSI_UPDATE_SYNTAX

CHAR_TO_DATETIME

CHAR_TO_INTERVAL

COLUMN_ALIAS_AS

CONSTRAINT_NAME_AFTER

CONSTRAINT_NAME_BEFORE

DATETIME_EXTEND_FUNCTION

DOUBLE_TO_SINGLE_QUOTES

DTYPE_ALIAS

ESQL_AFTER_DELETE

ESQL_AFTER_INSERT

ESQL_AFTER_UPDATE

ESQL_UNLOAD

ESQL_UNLOAD_FULL_PATH

FAKE_IMMEDIATE

FULL_INSERT

IGNORE_CLOSE_ERROR

148

CHAPTER 9. SQL CONVERSION 9.5. CONVERSION SYNTAX

IGNORE_DTYPE_VARCHAR_MIN

IGNORE_OWNER

INSERT_ALIAS

INTERVAL_EXTEND_FUNCTION

LIMIT_LINE MATCHES_TO_GLOB

MATCHES_TO_LIKE

MATCHES_TO_REGEX

MONEY_AS_DECIMAL

MONEY_AS_MONEY

NO_DECLARE_INTO

NO_FETCH_WITHOUT_INTO

NO_ORDBY_INTO_TEMP

NO_OWNER_QUOTE

NO_PUT

NO_SELECT_WITHOUT_INTO

NO_SERIAL_START_VALUE

OMIT_INDEX_CLUSTER

OMIT_INDEX_ORDER

OMIT_NO_LOG

QUOTE_OWNER

RENAME_COLUMN_AS_ALTER_TABLE

RENAME_TABLE_AS_ALTER_TABLE

REPLACE

REPLACE_COMMAND

149

9.5. CONVERSION SYNTAX CHAPTER 9. SQL CONVERSION

REPLACE_EXPR

REPLACE_SQLCONST

REPLACE_SQLFUNC

SELECT_INTO_TEMP_AS_CREATE_TEMP_AS

SELECT_INTO_TEMP_AS_DECLARE_GLOBAL

SIMPLE_GRANT_SELECT

SIMPLE_GRANT_UPDATE

SQL_CURRENT_FUNCTION

STRIP_ORDER_BY_INTO_TEMP

SUBSTRING_FUNCTION

SWAP_SQLCA62

TABLE_ALIAS_AS

TEMP_AS_DECLARE_GLOBAL TEMP_AS_TEMPORARY

USE_BINDING_FOR_PUT

USE_DATABASE_STMT

USE_INDICATOR

150

Chapter 10

Make

make is a command generator. It is used to automate the task of recompiling
and relinking programs when you have altered a source file. Typically you
create a file called Makefile or makefile (Makefile is preferred as it sorts
higher in an ls listing of directory files) which contains information about
which files depend on which others and lists the commands needed to create
the object modules (.o files) and executable binaries.

Once you have your Makefile correctly written, whenever you want to re-
compile a program after changing a file, simply type:

make

and the minimum necessary compilation and linking will be done for you to
produce the altered executable.

10.0.4 GNU make

This chapter gives some advice and examples for writing Makefiles for use
with Aubit4GL. For documentation, ignore the O’Reilly book (which does
not cover GNU make) but go the www.gnu.org website and read the online
documentation there.

151

10.1. MAKEFILES CHAPTER 10. MAKE

10.1 Makefiles

The following advice assumes that you are using GNU make (which has
several constructs not available in other older versions of make).

10.1.0.1 Include File

Here is a sample set of definitions for an Aubit4GL Makefile:

---- Declare the following suffixes meaningful to make
.SUFFIXES: .afr .per
.SUFFIXES: .ao .4gl
.SUFFIXES: .iem .msg
---- Pattern rules for the above suffixes
%.afr : %.per # equivalent to the old make form .per.afr:
(TAB) fcompile $<
%.ao : %.4gl
(TAB) 4glc -c $?
%.iem : %.msg
(TAB) amkmessage $< $@

These definitions should be put into a separate file (say makedefs) in the
parent directory. You can then include the makedefs file in the Makefile
itself with the statement:

include ../makedefs

The benefit of using include files in this way is that you avoid repetition of
the included elements, and maintenance is reduced to a single file.

10.1.0.2 Make glossary:

$? = all the newer prerequisites (which need recompiling)

$@ = the current target (left of the : in the prereq line)

152

CHAPTER 10. MAKE 10.1. MAKEFILES

$< = the first of the newer prerequisites. This is suitable when the com-
mand can only compile 1 file at a time (like aubit fcompile).

$^ = all the prereqs (not just the newer ones). Use this when you need to
relink all the object modules.

$* = the stem (matching % in prereq line).

% = wildcard matches any sequence of zero+ chars. Note: the 2nd and
subsequent % is the same sequence that the 1st % matched.

$?, $(?), and ${?} are all the same variable. If a variable has more than a
1 char identifier you must enclose the identifier in () or {}s
A modifier D, or F, can be used with $?, $@, $<, or $^ to return just the
D(irectory part) or the F(ile part) of the filename.
e.g. if $? = ../lib/options.4gl then
$(?D) = ../lib and $(?F)= options.4gl

Note that these D and F modifiers are defined in make’s built-in rules as:

?D=$(patsubst %/,%,$(dir $?))
?F=$(not-dir $?)
etc

The $(dir arg) and $(not-dir arg) macros are available for use with any
variables whether user defined or builtin. Note that the $(?D) definition
removes the trailing slash from the directory path (substituting %/ with %)

10.1.0.3 Makefile Example

#
GPATH = ../lib ../per
.PHONY: all
all: prog prog.iem prog.afr proga.afr prog.iem
srcfiles = prog0.4gl prog1.4gl prog2.4gl ../lib/options.4gl
objfiles = $(srcfiles:.4gl=.ao)
prog : $(objfiles)
(TAB) aubit 4glc -o $@ $^
Note the subtle difference here $^ (all prereqs are needed)
$? would link only the newly compiled objects

153

10.1. MAKEFILES CHAPTER 10. MAKE

The example file above is for a program consisting of 4 modules:

• prog0.4gl (containing the global ... end global statements)

• prog1.4gl (containing the main ... end main function and some general
purpose functions)

• prog2.4gl (containing table specificated generated functions for Query,
Add, Update, Delete, etc

• options.4gl for directing report output.

This structure was common with Fourgen generated programs.

10.1.1 Pattern Rules

Rules in Makefiles take the form:

target : prereq1 [[prereq2] ...]
(TAB) command1
...

Note that the invisible tab is a crucial part of the syntax of Make. These
sometimes get corrupted into spaces in ftp transfers - so be careful!. A make
rule specifies that the target files depend on the listed prerequisite files and
supplies the command that make should execute whenever a prerequisite
file is newer (that is modified more recently than) the target file(s).

10.1.2 Make variables

In Makefiles like the above, we use variables srcfiles and objfiles to
minimise the work of changing definitions. Note that the assignment to ob-
jfiles is done using a substitution expression (.ao replaces .4gl from the
srcfiles list). If we add another library module to the srcfiles list (say
../lib/names.4gl), no other change need be made to the Makefile.

Traditionally we have used uppercase for variable names in Makefiles. The
GNU people now recommend that you use lowercase for better readablity.

154

CHAPTER 10. MAKE 10.1. MAKEFILES

10.1.3 GPATH and VPATH

Normally make will search only the current directory. If you want to force
it to look elsewhere then you can set GPATH or VPATH to a list of search
directories.
Directories listed in GPATH will be searched and the targets compiled into
the remote directory.
Directories listed in VPATH will be searched but the targets compiled into
the current directory.
In the example Makefile, options.ao will be compiled into ../lib/options.ao

10.1.4 .PHONY

Nearly all Makefiles have phoney targets: all, clean, install, and maybe oth-
ers. GNU make allows you to declare these phoney targets (i.e. targets
which are not real files to be built by commands). The benefit of doing
this is the .PHONY declaration tells make to ignore any files called clean,
install. etc. Omitting the .PHONY declaration might result in an accident-
ally created file called install, preventing make from executing the install
commands.

10.1.5 Implicit rules

Note in the example that there is no specific rule for the help file and forms.
These will be built by make using the make definitions we put into the
include file. The targets: prog.iem, prog.afr, and proga.afr will be compiled
using the %.iem : %.hlp and %.afr : %.per pattern rules in ../makedef.

10.1.6 Syntax

comments the hash symbol # comments out the rest of the line (i.e make
ignores what follows the #).

quotes both single quotes ’ and double quotes " are treated literally. Do
not use them in Makefiles. In shell programs you use quotes to inhibit
interpretation and the shell strips them from its input. make does not
do anything special to quotes.

155

10.1. MAKEFILES CHAPTER 10. MAKE

longlines break a long line by putting a backslash \ before the end of line.
This will tell make to remove the backslash and the end of line, and
interpret the result as a single line.

10.1.7 Debugging make

A botched Makefile can destroy your sourcefiles.

To help debug your Makefiles, use the -n and -p options.

-p will display all the rules (including the builtins) that make is using

-n will cause make not to actually execute the command but display them
to the screen

Type the command:

make -np prog

will cause make to display all its definitions and rules, and to display all the
commands it would run if you had typed the command: make progAmake

amake is an x4GL specific set of rules and tools for GNU make

156

Chapter 11

amake

11.1 Introduction

With the Aubit 4GL compiler, compiling a small program can be trivial:

4glpc *.4gl -o myprog
4glpc *.per
amkmessage myhelp.msg myhelp.iem

Even with extra C code, it’s still simple:

4glpc *.4gl myccode.c -o myprog -DAUBIT4GL

But, when you want to:

• keep your make files compatible with Informix and 4Js compilers

• have multiple program definitions in one directory

• use pre-linked libraries

• be capable of compiling to P-code and C-code for each compiler

• take care of installing and cleaning

it’s not that simple any more.

157

11.2. SUMMARY CHAPTER 11. AMAKE

11.2 Summary

When you need to create new make file to compile x4gl programs, you
should use rules, headers and footer prototypes supplied with Aubit 4GL.
Utility for running created make files, while not necessary, is also supplied,
and can make your life a little easier.

For existing Informix 4gl and 4Js BDL/D4GL makefiles, I created a con-
version system that will first create completely new set of make files from
existing makefile (one per program) and then let you use it, in more or less
same way we did so far, but erase most if not all of existing shortcomings.
Old makefiles are preserved, so you can mix and match, if you really want
to, but you won’t need to.

11.3 Converting old makefiles

11.3.1 prepmake

run "prepmake" in the directory containing old make file, "makefile".

This will create file "makefile.prep" containing instruction needed for dump-
ing program definitions to individual make files (*.mk). Note: this function-
ality depends on the fact that your existing makefiles use command "fgllink"
or other 4gl compiler commands somewhere in each defined program target,
and list all source files in dependencies. If for any reason this is not true for
some makefile you want to process, look at the script, it should be easy to
substitute this with some other present command.

Next, "prepmake" will first run "touch *.4gl" (to force all targets into think-
ing they need building) and then "make -f makefile.prep". This will create
one make file for each program defined in makefile.prep, named as <pro-
gram>.mk, using script "genmake". Each .mk files will contain definitions
of include headers and footers, and names of source files needed to build
that program, and nothing else. Like this:

11.3.2 example
include header.mki

158

CHAPTER 11. AMAKE 11.4. 2. AMAKE

PROG = P4E
GLOBALS.4gl = P4E.4gl
FILES.4gl = \
${GLOBALS.4gl} \
bankwind.4gl \
ckapwind.4gl \
ckhdwind.4gl \
secufunc.4gl \
vendwind.4gl
FILES.per = ${ALLFORMS.per}
include_footer.mki

11.3.3 amakeallo

amakeallo can be ued to rebuild all the .o object files in a Makefile.

11.3.4 amakeallf

amakeallf can be used to recompile all the .per form files in a Makefile.
Note: amake knows how to override header.mki, footer.mki, or both. You
can also
override anything coming from header, and later, in footer, anything at all.

11.4 2. amake

Examples:
amake # build default targets of all .mk files in ./
amake -k -all install # install all programs, ignore errors
amake P11 aubit -k # build aubit target defined in P11.mk, ignore errors
amake P11 aubit -defaultinclude# build P11 target for Aubit compiler,
use includes defined in P11
amake P11 -header myhead.mk # default P11 target, use myhead.mk for
header
amake --help for full lost of flags and parameters.

159

11.4. 2. AMAKE CHAPTER 11. AMAKE

11.4.1 Requests

Tell me if it’s useful for you, if you need help, explanations, changes... If you
make generally useful changes, I would like if you send them back to me.
Latest version of these files will always available through Aubit 4gl CVS

11.4.2 Notes

• Most existing makefiles have no idea which file contains GLOBALS
definitions; some compilers care, some don’t. I assumed first source
file listed in GLOBALS file, which can be wrong. If you step on this
one, you’ll need to find out manually which one is it actually. I guess
it’s more then possible to grep for "END GLOBALS" in "genmake" if
we wanted to do that automatically.

• Some existing makefiles often don’t have any references to form files,
and even if they do, they have no idea which forms belong to which
program. By default, I defined that each program needs all forms
in current module. It would be wise to gradually replace this with
actual forms needed. I guess that it should be possible to grep that
from "genmake", since there we know all 4gl source files.

• You should consider this as technology demonstration. Some things
are probably missing, or incorrect, in rules definitions and targets.
But this is now so easy to fix, since it’s all in one place that I did
not worry too much. It compiled everything I tried. But I don’t
consider this finished code. It does what I needed, it may or may not
do that same for you, but again, it’s really easy to do anything in the
way this is structured now. You should consult the "make" manual
at http://www.gnu.org/manual/make-3.79.1/html_mono/make.html
if you want to play with existing code.

• All "programs" that are nothing more then hard links, are ignored.
This needs to be fixed in existing makefiles manually, unless someone
can explain to me what’s good about linking a program to a different
name and then pretending it’s something else. It won’t work on Win-
dows anyway, so if we want Windows compatibility, we cannot do it
anyway.

160

CHAPTER 11. AMAKE 11.4. 2. AMAKE

• some of functionality depends on recent version of GNU make. If you
don’t have it, you’ll need to download it from http://www.gnu.org.
My version was 3.77. Current version as of time of writing was 3.79

• Most existing x4gl makefiles don’t have any idea about help files. It
should be possible to grep for this in "genmake".

• It’s really easy to add functionality to do local check out, since now you
can compile anywhere, even without any source files in local directory
(amake/make will find them if they exist) This is closely related to
the way that serious development should be organized using version
control...

• Why one make file for one program? First, when more then one de-
veloper is working in same tree, it gives me the warm fussy feeling.
Second, it makes target definitions cleaner, simpler, and easier to de-
bug. Third, you can checkout your own make file to wherever you
want, together with all sources needed for program. Or without them
for that matter.

• Object libraries (.aox in Aubit, .42x in 4js dialect). I guess it should
be possible to make attempt in automating this in "genmake", if we
really want it. Related to this is an issue of how different 4gl compilers
"strip" unused functions from executables. D4GL don’t really care,
since linking produces only a map file. i4gl does care, and Querix and
Aubit, being C code translators, can easily strip executables.

• why is amake needed: actually, it’s not, you can do "make -f 1.mk 2.mk
params" or "make -f *.mk params" just fine, as long as you keep header
and footer includes in each .mk file. It just makes things simpler, more
flexible, and can replace headers on the fly.

11.4.3 Installation

(don’t forget to convert back to UNIX file format if you are receiving this
on Windows box; needless to say, scripts will need "chmod a+x")
These two should go somewhere in the path, but will probably be used only
once:

prepmake - sh script to prepare original make file, created makefile.prep

161

11.4. 2. AMAKE CHAPTER 11. AMAKE

genmake - sh script called from prepared makefile to create individual
make files

Header will probably be most useful in your program directory, since it can
contain module specific definitions, but one copy of general type should also
probably be in /etc or /usr/incl:

header.mki - make file for including from each individual make file. It in
turn includes a4gl.mk i4gl.mk q4gl.mk and d4gl.mk by default.

The Following files are supposed to be completely abstracted, so in /etc or
/usr/include they go:

footer.mki - make targets definitions included from each individual make-
file.

a4gl.mk - rules for compiling using Aubit 4gl compiler

i4gl.mk - rules for compiling using classic Informix 4gl compiler

d4gl.mk - rules for compiling using 4Js (Informix D4GL) 4gl compiler

q4gl.mk - rules for compiling using Querix 4gl compiler

And finally, this one should be in the path, probably in /bin:

amake - sh script used for executing make process, instead of the make
command

11.4.4 Credits:

Thanks to Jonathan Leffler for Informix-4gl and 4Js rules, and general
concept of how 4gl program should be processed by make.
See www.informix.com/idn

162

CHAPTER 11. AMAKE 11.4. 2. AMAKE

11.4.5 #DEFINE

Note about using #DEFINE-style constructs, like C. There’s nothing built
into 4GL, but many people use the Unix "M4" command successfully. You
could also use "cpp".

Stuart Kemp (stuart@cs.jcu.edu.au):

To use the C preprocessor (cpp) in conjunction with GNU make you might
use a suffix of ".cpp" on the files you edit, and then build a Makefile con-
taining:

.SUFFIXES: .4gi .4go .4gl .cpp .frm .per .cpp.4gl:
@echo Make $@ from $< $(CPPDEFS)
@$(CPP) $(CPPDEFS) $< > $@
.per.frm:
@echo Make $@ from $<
@form4gl -s $<
.4gl.4go:
@fglpc $<

Of course, the downside of this is that if you get an error-message when
running your .4g[io] program, the line-number will be that in the .4gl file,
not the .cpp file.

11.4.6 4GL Makefiles

There are no standard rules for how to organize Makefiles for 4gl. This note
attempts to repair this deficiency for both Unix and NT systems.

11.4.6.1 Makefiles for Classic 4GL on Unix

Assuming that your version of MAKE understands the ’include’ directive,
a typical makefile will look rather like the file described earlier in thisdoc-
cument. If your MAKE does not understand the ’include’ directive, the
simplest solution is to obtain a version of MAKE which does understand
them.

163

11.4. 2. AMAKE CHAPTER 11. AMAKE

One such MAKE is GNU Make, which is widely available on the Internet.
See The GNU Project and the Free Software Foundation (FSF) for more
information.

The rules file ’i4gl.mk’ is located in some convenient directory. In the ex-
ample, $HOME/etc is used, but a centralized location such as $AUBIT-
DIR/incl, $INFORMIXDIR/etc or $FGLDIR/etc is a reasonable choice.
Note that either the curly brackets or parentheses are required around the
name of the environment variable in the makefile.

The macros list the components of the program, and the definitions of the
lists avoid replicating names as much as possible, so that if a file is added,
deleted or renamed, only one line in the makefile needs to be changed.

Note too that the current versions of i4gl.mk and d4gl.mk automatically
provide definitions for the majority of the derived files, so the makefile itself
does not have to define macros such as FILES.o or FILES.4ec. It must,
however, define FILES.4gl for the I4GL source files, FILES.per for the form
source files, and FILES.msg for the help source files, since these macros are
used to define the other macros.

This makefile uses the ’standard’ install script for Unix, and that means it
can only install a single file at a time (an silly design decision, but one which
was made so long ago that it cannot readily be changed). Consequently, we
have to iterate over the list of form files. If there was more than one message
file, we’d need to do the same for the message files.

The hard work in this makefile is the install and clean process. The actual
compilation rules are minimal, occupying just six non-blank lines. There are
some standard targets which are desirable in most makefiles. These include
all to build everything that is needed by default, install to put the software
in a location where it can be used, and clean to remove the debris from the
development process.

As another pseudo-standard, if you are working with both Classic 4GL
and Dynamic 4GL, or if you are using both p-code and c-code, it helps to
standardize on some extra names. The makefiles illustrated here use:

• aubit Aubit 4gl c-code compilation

• i4gl-ccode Classic 4GL c-code compilation (I4GL)

• i4gl-pcode Classic 4GL p-code compilation (I4GL-RDS)

164

CHAPTER 11. AMAKE 11.4. 2. AMAKE

• d4gl-ccode Dynamic 4GL c-code compilation

• d4gl-pcode Dynamic 4GL p-code compilation

• i4gl Classic 4GL (both p-code and c-code)

• d4gl Dynamic 4GL (both p-code and c-code)

• querix Querix 4gl c-code compilation

These makefiles can also builds the custom I4GL p-code runner that is
needed to run the program.

11.4.7 D4GL Makefiles on Unix

The rules for compiling D4GL are similar to the rules for compiling I4GL,
but they use a different set of suffixes.

The first target in the makefile is ’default’, and is what will be built if you
simply type "make -f d4glonly.make". It is set up to build just the D4GL
p-code program; to build the c-code program too, you have to specify "all"
or "d4gl-ccode" on the command line.

This makefile builds a custom runner for D4GL because the code uses some
C code. When you need a D4GL custom runner, you have to link with
it too, so you have to build the custom runner before you try linking the
program, and the dependencies ensure this happens automatically.

The rest of the makefile follows the pattern in the I4GL version, with the
changes appropriate to handling D4GL instead of I4GL.

11.4.7.1 I4GL Makefiles on Unix

The actual rules for compiling Informix Classic 4GL are defined in the file
i4gl.mk . There are a number of key things to note about them.

• The rules file does not reset the complete MAKE suffix list. Some
versions of the file did, but this leads to problems when you try to
add support for Dynamic 4GL as well; which file should be included
first, and why, and so on. The down-side of being so accommodating

165

11.4. 2. AMAKE CHAPTER 11. AMAKE

is that if there is an intermediate ".c" file left over by a failed I4GL
compilation, then that file will be compiled in preference to the ".4gl".
To fix this, you have to nullify the suffix list and then reinstate the
suffixes you want in the correct order (which means preferring the
.4gl file to the .c file, and .ec files to .cfiles). However, it is difficult to
write two separate files, i4gl.mk and d4gl.mk, which can be included
in either order, and which don’t repeat each others suffixes, if you also
zero the suffix list in both files.
I guess you could solve this if you defined I4GL.SUFFIXES and D4GL.SUFFIXES
as macros, and had the line which re-instates the suffix rules specify
both macros, even if one of them was actually empty (as it would be
if you had not already processed the other rules file). A change for
next month.

• The rules file does not define any targets, so that you can include it
at the top of the makefile without altering the default target written
in the makefile.

• The macro names are very consistent (arguably too consistent and not
sufficiently mnemonic).

11.4.7.2 NMAKE

If you have Microsoft Visual Studio or Microsoft Visual C++ on your NT
machine, you will have the NMAKE program available to you. You can
use Makefiles patterned on the one shown below (from the D4GLDEMO
program). Note that both the rules and the makefiles are much simpler on
NT than on Unix because Classic 4GL is not available on NT, and neither
is the Dynamic 4GL c-code compiler.

Some of the significant differences between MAKE on Unix and NMAKE
on NT are:

• NMAKE does not accept ${MACRO}, but only $(MACRO).

• NMAKE does not accept a dot in macro names.

• NMAKE does not recognize ’null suffix’ rules (for converting x.c into
x, for example; it would only handle x.c to x.exe).

166

CHAPTER 11. AMAKE 11.4. 2. AMAKE

• Since there is no D4GL c-code compiler on NT, those rules in d4gl.mk
are irrelevant.

• Since there is no I4GL c-code or p-code compiler on NT, the rules in
i4gl.mk are irrelevant.

• There is no fglmkrun on NT.

• You have to be very careful about what you do with ’cd’ commands.
Typically,you have to do:
cd with && $(MAKE) && cd .. POSIX.1 requires MAKE to accept
both ${MACRO} and ${FILE.o}, unlike NMAKE.

• Since Unix versions of MAKE do accept the notations accepted by
NMAKE, it would be possible, and possibly even sensible, to resign
oneself to using the notation accepted by NMAKE in both the Unix
and NT versions of the Classic 4GL and Dynamic 4GL makefiles and
make rules. However, that also feels a bit like giving in to the school-
yard bully, and that isn’t really acceptable.

Prepared by: mailto:jleffler@informix.com

Last Updated: 1999-10-08

Edited by AF

11.4.8 Bug in ESQL/C rules:

Compiling ESQL/C code did not work because of macro name mismatches.

Specifically, there’s a line that defines ESQL = ${ESQL_EC_ENV} ${ESQL_EC_CMD}
${ESQL_EC_FLAGS} but the corresponding macros for compiling ESQL/C
code use ${ESQL_EC} rather than ${ESQL}. I concluded that I meant to
define ESQL_EC, not ESQL.

For Aubit 4gl team,

Andrej Falout

167

11.4. 2. AMAKE CHAPTER 11. AMAKE

168

Chapter 12

A4GL Utilities

12.1 adbschema

Generate a schema file representing tables and or procedures within a data-
base. It can also produce sql scripts (or 4GL programs) for loading and
unloading data to/from a database. This is useful when migrating from one
RDBMS to another.

Usage :

adbschema [-noperms] [-fileschema] [-t tabname] \
[-s user] \
[-p user] [-r rolename] [-f procname] \
-d dbname [-ss] [filename]

-noperms Do not include any GRANT/REVOKE

-fileschema Generate a schema suitable for the FILESCHEMA SQL Mod-
ule

-U Generate unload statements

-U4GL Generate a 4GL program with unload statements

-L Generate load statements

169

12.2. AFINDERR CHAPTER 12. A4GL UTILITIES

-L4GL Generate a 4GL program with load statements

A typical example may be (assuming the database being migrated was called
customers):

$ adbschema -q -noperms -d customers > customers.sql
$ convertsql INFORMIX POSTGRES < customers.sql > newdb.sql
$ adbschema -q -U4GL -d customers > unloadit.4gl
$ 4glpc unloadit.4gl -o unloadit
$./unloadit
$ adbschema -q -L4GL -d customers > loadit.4gl

(create database in new RDBMS and run the newdb.sql file to create the
tables)

$ 4glpc loadit.4gl -o loadit
$./loadit

12.2 afinderr

Usage:

$ afinderr errornumber

This will trawl through all of the message files in the $AUBITDIR/etc direct-
ory looking for any help messages associated with that help number. This is
useful because the same error numbers could come from multiple places (eg.
either Informix or Postgres) and hence may well have a different meaning.

12.3 asql

This is an workalike for Informix’s dbaccess program. Several versions are
required depending on the target database :

1. asql_g.4ae - Generic interface (For ODBC usage)

2. asql_i.4ae - Compiled using native Informix ESQL/C

170

CHAPTER 12. A4GL UTILITIES 12.3. ASQL

3. asql_p.4ae - Compiled using native Postgres ecpg

When the program starts - you’ll be presented with a menu :

171

12.3. ASQL CHAPTER 12. A4GL UTILITIES

The only major difference should be the Utilities menu - this provides access
to some features which are present in the Informix isql tool which are not
available in the dbaccess tool.

12.3.1 runforms

This is a simple replacement for the sperform Informix utility which allows
you to add, update and remove data from a table (or tables) via a simple
form interface. runforms is used as the ’Run Form’ option in the asql
application.

172

CHAPTER 12. A4GL UTILITIES 12.4. AUPSCOL

12.4 aupscol

’aupscol’ is a workalike for the Informix-4GL upscol utility. Using this
you can specify default attributes and validation for use when forms are
compiled.

12.5 P-Code Dropped

Aubit4GL used to include an experimental PCode compiler. Work on this
has ceased because of proposed projects to develop a common bytecode
for Java, Perl, and Python. When this is solidified, we intend to rewrite
our Aubit4GL pcode compiler to output pcode conformant with the new
standard.
Generic 4GL Specific Description
c2pcode c2pcode_fgl Compiles a .c file
checker checker_fgl Dumps the contents of a compiled .c file
runner runner_fgl Runs the resulting file

12.6 configurator

The configurator allows you to view the various settings available within
the Aubit4GL suite of programs. A brief summary is available in Appendix

173

12.7. CONVERTSQL CHAPTER 12. A4GL UTILITIES

A.

12.7 convertsql

convertsql is a program which uses the SQL conversion rules used intern-
ally by the Aubit4GL compiler to convert the SQL of one RDBMS dialect to
another. This is useful for converting existing SQL scripts to run on a dif-
ferent server, for example, those generated by the adbschema program. The
program always reads from the standard input, and writes to the standard
output.

Usage:

convertsql source-sql-dialect target-sql-dialect

Note : Currently only ’Informix’ is supported as a source dialect.

12.8 default_frm

default_frm will generate a default form for a table(s) specified on the
command line.

Usage

default_frm -d dbname -t tabname [-t tabname ..] [-o outputfile]

If no output file is specified, then the output will be written to the standard
output (ie normally the terminal)

Eg.

174

CHAPTER 12. A4GL UTILITIES 12.9. FCOMPILE

12.9 fcompile

This is the Aubit4GL tool to create a form binary from a .per form file.e.g.

Usage:

fcompile customer
Note: Omit the .per form suffix

will create a file with suffix .afr.

12.9.1 Builtin Forms

It is possible to build the compiled binary form into an Aubit4GL program.
This allows you to distribute binaries without the need to bundle the .afr

175

12.10. FSHOW CHAPTER 12. A4GL UTILITIES

file with it. It also allows the file to run in an environment where the vari-
ables are incompatible with the environment where the forms were originally
compiled.
The process to build in the form(s) is as follows:

• Set the environment:
A4GL_PACKER=PACKED
A4GL_FORMTYPE=GENERIC

• Use fcompile -c <form> to generate a .c file

• Inside the .4gl code, before displaying the form use the statement:
CALL form_is_compiled(form, “MEMPACKED”, “GENERIC”)

• Compile the .c formfile with the program code. e.g.
4glpc progr.4gl form.afr.c -o prog.4ae

You can (as of Version 1.2) create an xml version of a .per file by using the
-xml option:

fcompile -xml customer

will create customer.per.xml
This option is intended for use with the new GUI Visual Display clients
such as theVentas VDC program.
It is not strictly necessary to use the -xml option as Aubit4GL will convert
a .afr file on the fly to xml for transmission to the XML front ends.

12.10 fshow

This is a very simple 4GL application which opens and displays the form
specified on the command line. This is very useful for checking how a form
will actually look from within a 4GL program (especially when using the
GUI output).
Usage :
$ fshow formname

176

CHAPTER 12. A4GL UTILITIES 12.11. LOADMAP

12.11 loadmap

This is a small 4GL application which can take the mapfiles generated by
4glpc --map and load that information into a database. The sourcecode
for this (tools/loadmap/loadmap.4gl) is meant to be a pro-forma for your
own loadmap program.

12.12 mkpackage

This program is for internal use. You can safely ignore it.

12.13 prepmake

A utility script to convert makefiles to amake format

12.14 decompilers

Aubit4GL allows you to decompile most of the file formats which are com-
piled’(eg forms). The decompilers available are :

177

12.15. INTERNAL APPS CHAPTER 12. A4GL UTILITIES

unmkmessage - message/help files

mdecompile - menu files

fdecompile - form files

12.15 Internal Apps

12.15.1 xgen

xgen is used interally as a replacement for the SUN RPC rpcgen program.
This takes a ’.x’ description of data structures and generated the C code
required to read and write those structures to disk. Internally, Aubit4GL
makes use of .x files for describing forms, menus, and compiled P-Code.

The code generated by xgen is used by the generic packers to write the data
in packed, memory packed, and gzip’d formats.

178

Chapter 13

Packages

13.1 Packages

Packages are shared libraries that contain callable code.
Normally - you call these with code like :

call channel::open_file("fin","/etc/passwd","r")
call channel::open_file("fout","./passwd.new","w")
...
call channel::read(lv_in,[lv_rec.*]) returning b

You could import those functions so they can be called without the channel::
prefix by creating a package and then importing it in the 4gl

IMPORT PACKAGE channel

or its synonym :

USE channel

This channel_package file would be just a text file normally in the directory:
$AUBITDIR/etc/import
which contains the library and function names:

179

13.1. PACKAGES CHAPTER 13. PACKAGES

channel open_file
channel open_pipe
channel set_delimiter
channel close
channel fgl_read

The channel_package file may also be in the current working directory or
your home directory. (You can also specify a list of directories to search by
using the A4GL_CLASSPATH environment variable.)

You can have functions from many libraries in a single package. That is
why you need to have the library name as well as the function names.

To create these shared libraries:

$ 4glpc -as-dll module.4gl -o module.so

The standard AUBIT additional libraries are set in

$AUBITDIR/lib/extra_libs/*/LIBRARYNAME.[4gl|so]

These are NOT currently included in the standard binary downloads, but
can be got from cvs:
cvs -d:pserver:anonymous@aubit4gl.cvs.sourceforge.net:/cvsroot/aubit4gl login

cvs -z3 -d:pserver:anonymous@aubit4gl.cvs.sourceforge.net:/cvsroot/aubit4gl \
co -P aubit4glsrc/lib/extra_libs

The 4GL files will then need to be compiled, either using

$ 4glpc -as-dll module.4gl -o module.so

or maybe by running the command: make

Local library modules may be placed in the current working directory or
the HOME directory (assuming they are in LD_LIBRARY_PATH), or any-
where else in that PATH. The module name should be in the form:

lib<NAME>.4gl

The lib prefix should not be included in the channel_package file.

To use the channel library:

180

CHAPTER 13. PACKAGES 13.2. CHANNEL

MAIN
DEFINE lv_s char(200)
CALL channel::open_pipe("pipename","ls -l","r")
WHILE channel::read("pipename",lv_s)

CODE
A4GL_trim_nl(lv_s);

ENDCODE
DISPLAY lv_s
END WHILE

CALL channel::close("pipename")
END MAIN

Here it runs the command ls -l and reads the output. (You might want
to open a pipe for writing, in which case the last parameter would be a "w",
but you cannot open a pipe for both reading and writing).

"pipename" is just a name associated with the pipe and could be anything
so long as it is unique within your program.

The string (lv_s) should be long enough to contain the string - and includes
any trailing newlines. In the example we trimmed this by dropping to C
and calling the Aubit4GL builtin: A4GL_trim_nl()

Note : the CODE and ENDCODE keywords must be the only things on
their respective lines - no leading or trailing spaces or tabs.

But between the CODE and ENDCODE there can have as many spaces
and newlines as you like!)

13.2 channel

This library allows simple read/write access to files in a manner similar to
that provided by some other 4GL vendors.

13.2.1 Dependencies

None

181

13.3. FILE CHAPTER 13. PACKAGES

13.2.2 Synopsis
DEFINE handle CHAR(64)
DEFINE filename CHAR(512)
DEFINE cmd CHAR(512)
DEFINE flag CHAR(1) # r, w, u, a
DEFINE delimiter CHAR(1) # e.g. ’|’
USE channel
CALL open_file(handle,filename,flag)
CALL open_pipe(handle,cmd,flag)
CALL set_delimiter(handle,delimiter)
CALL close(handle)
CALL fgl_read(handle,n) # Obsolete
CALL read(handle,variable)
CALL read(handle,var1, var2, ... varn)
CALL write(handle,var)
CALL write(handle,var1,var2, ...varn])

Notes:

Flag is

’u’ - input and output (*not implemented)

’w’ - write only

’r’ - read only

’a’ - write only (*append is identical to ’write only’ in this context)

13.3 file

This is a library exposing various STDIO functions from the standard C
library. Handles are all standard 4GL INTEGER’s. Mostly the Aubit4GL
functions are wrappers around the standard C functions of the same name.

13.3.1 Dependencies

None

182

CHAPTER 13. PACKAGES 13.4. HTML

13.3.2 Synopsis
DEFINE filename CHAR(256)
DEFINE p_command CHAR(256) # e.g ”ls -l”
DEFINE dirname CHAR(256)
DEFINE direntry CHAR(256)
DEFINE buff CHAR(256)
DEFINE mode CHAR(3)
DEFINE handle INTEGER
DEFINE r INTEGER # return value of C functions
DEFINE n INTEGER # count
DEFINE ok INTEGER # boolean
DEFINE c CHAR(1)
USE a4gl_file
LET r=popen(p_command,mode)
LET r=fopen(filename,mode)
LET r=ftell(handle)
LET r=ferror(handle)
LET r=fseek(handle,n)
LET r=fseek_from_end(handle,n)
LET n=fsize(handle)
LET buff=fgets(handle)
LET c=fgetc(handle)
LET r=fputs(buff, handle)
LET r=feof(handle)
LET r=fclose(handle)
CALL rewind(handle)
LET handle=opendir(dirname)
CALL readdir(handle)

RETURNING direntry, ok
LET r=closedir(handle)

13.4 html

This library allows you to use Aubit4GL to create web pages. Originally
contributed by Andrj Falout, it has been neglected for some time. You can
find the source file: libahtmllib.4gl in the subdirectory: tools/html of
the source distribution. Be warned that if you are looking for the source

183

13.4. HTML CHAPTER 13. PACKAGES

of individual functions, the htmlf_ and js_ prefixes appear in uppercase
(HTMLF and JS_) while the html_ prefixes appear in lower case (html_).
Routinely the 4GL compilers downshift all function names when creating C
code.

Documentation of the html package is immature at this stage so be merciful
if your esteemed editor errs in some details.

13.4.1 Dependencies

None

13.4.2 Synopsis
DEFINE HTTP_POST_VAR CHAR(1000)
DEFINE HTTP_GET_VAR CHAR(1000)
DEFINE www RECORD

GATEWAY_INTERFACE CHAR(20),
SERVER_NAME CHAR(60),
SERVER_SOFTWARE CHAR(100),
SERVER_PROTOCOL CHAR(20),
REQUEST_METHOD CHAR(10),
QUERY_STRING CHAR(300),
DOCUMENT_ROOT CHAR(200),
HTTP_ACCEPT CHAR(200),
HTTP_ACCEPT_CHARSET CHAR(40),
HTTP_ACCEPT_ENCODING CHAR(20),
HTTP_ACCEPT_LANGUAGE CHAR(10),
HTTP_CONNECTION CHAR(20),
HTTP_HOST CHAR(200),
HTTP_REFERER CHAR(600),
HTTP_USER_AGENT CHAR(300),
REMOTE_ADDR CHAR(20),
REMOTE_PORT CHAR(10),
SCRIPT_FILENAME CHAR(300),
SERVER_ADMIN CHAR(100),
SERVER_PORT CHAR(10),
SERVER_SIGNATURE CHAR(100),

184

CHAPTER 13. PACKAGES 13.4. HTML

PATH_TRANSLATED CHAR(300),
SCRIPT_NAME CHAR(300),
REQUEST_URI CHAR(600)

END RECORD
DEFINE HTTPvar ARRAY [100] OF RECORD

vname CHAR(20),
value CHAR(60)

END RECORD
DEFINE g_css CHAR(40)
DEFINE cssfilename CHAR(40)
DEFINE mytext CHAR(10000)
DEFINE pagetitle CHAR(300)
DEFINE string CHAR(512)
DEFINE level INTEGER
DEFINE url CHAR(200)
DEFINE w, h INTEGER
DEFINE linkurl CHAR(300)
DEFINE linktext CHAR(300)
DEFINE elem, elem1, elem2, ... CHAR(1000)
DEFINE target CHAR(10)
DEFINE varname CHAR(60)
#--------------------------------
Simple HTML Functions
#--------------------------------
CALL html_css(cssfilename)
CALL html_display_para(mytext)
CALL html_end_body()
CALL html_end_center()
CALL html_end_para()
CALL html_head(pagetitle)
CALL html_headers()
CALL html_heading(string, level)
CALL html_hline()
CALL html_image(url, w, h)
CALL html_init(cssfilename)
CALL html_link(url, target, linktext)
CALL html_list(elem1, elem2, ...)
CALL html_meta(elem)
CALL html_params(params)

185

13.4. HTML CHAPTER 13. PACKAGES

CALL html_redirect(url)
CALL html_start_body()
CALL html_start_center()
CALL html_start_para()
CALL html_title(pagetitle)
#---------------------
HTML Form Functions
#---------------------
CALL htmlf_checkaspnews()
CALL htmlf_checksitenews()
CALL htmlf_countrylist()
CALL htmlf_email()
CALL htmlf_email_confirm()
CALL htmlf_firstname()
CALL htmlf_form_footer()
CALL htmlf_form_header()
CALL htmlf_lastname()
CALL htmlf_loginname()
CALL htmlf_radioitems()
CALL htmlf_submitbutton()
CALL htmlf_tableframeend()
CALL htmlf_tableframestart()
CALL htmlf_titleline()
CALL htmlf_transfervalue()
#-------------------------
Javascript functions
#-------------------------
CALL js_endcode()
CALL js_launchhelpwin()
CALL js_launchnewwin()
CALL js_pageload()
CALL js_startcode()
CALL js_validateemail()
CALL js_validateform()
CALL js_windowname()
#-----------------------------
Miscellaneous (mostly don’t use them)
#-----------------------------
CALL show_webserver_vars()

186

CHAPTER 13. PACKAGES 13.4. HTML

CALL show_webserver_vars_page()
CALL vread(varname)
CALL vreadall()
CALL xxxgetstdin()#
CALL getstdin()
CALL get_webserver_vars()

The functions prefixed by html_, htmlf_, and js_ are intended for use by
you the programmer. These functions all output to stdout HTML code (or
Javascript in the case of the js_xxx functions) using the 4GL DISPLAY
statement. The other functions are not intended for use by the programmer
but are called from within the library.
In general, the functions with start in their names output the appropriate
starting tags. The functions with end in their name output the closing tag.
e.g.
html_start_para() outputs: <P>
html_end para() outputs: </P>
The htmlf_ functions provide HTML structures such as tables, pick lists,
etc for use in HTML Forms.
The easiest way to learn this library is to use it. Just write code importing
the package, call the function, and look at its output.

13.4.3 Example
myhtml.4gl
output a webpage
USE a4gl_html
MAIN
CALL html_head("John’s Page")
CALL html_start_body()
CALL html_init("common") #load common.css
CALL html_heading("Example Page", 1)
CALL html_hline()
CALL html_start_center()
CALL html_start_para()
DISPLAY "This is an example of a centred paragraph"

187

13.4. HTML CHAPTER 13. PACKAGES

DISPLAY "where the source file has two lines of text"
CALL html_end_para()
CALL html_end_center()
CALL htmlf_tableframestart()
CALL htmlf_form_header()
CALL htmlf_titleline()
CALL htmlf_radioitems()
DISPLAY "<\TR>"
DISPLAY "<TR>"
CALL htmlf_countrylist()
DISPLAY "<\TR>"
DISPLAY "<TR>"
CALL htmlf_firstname()
DISPLAY "<\TR>"
DISPLAY "<TR>"
CALL htmlf_lastname()
DISPLAY "<\TR>"
DISPLAY "<TR>"
CALL htmlf_loginname()
DISPLAY "<\TR>"
DISPLAY "<TR>"
CALL htmlf_email()
DISPLAY "<\TR>"
DISPLAY "<TR>"
CALL htmlf_email_confirm()
DISPLAY "<\TR>"
DISPLAY "<TR>"
CALL htmlf_submitbutton()
CALL htmlf_form_footer()
CALL htmlf_tableframeend()
CALL get_webserver_vars()
CALL show_webserver_vars()
CALL html_end_body()
END MAIN

Compile and run:

4glpc -o myhtml.4ge myhtml.4gl
./myhtml.4ge > myhtml.html

188

CHAPTER 13. PACKAGES 13.5. MEMCACHED

Point your browser at myhtml.html

13.5 memcached

This library allows access to memcached servers.

13.5.1 Dependencies

None. A specialized version of libmemcache (originally by Sean Chittenden)
is included in the directory. Please see memcache.c and memcache.h for
details

13.5.2 Synopsis
DEFINE host CHAR(20)
DEFINE port CHAR(20)
DEFINE key CHAR(255)
DEFINE value CHAR(255)
DEFINE statrec RECORD
pid INTEGER,
version CHAR(30),
curr_items INTEGER,
total_items iNTEGER,
bytes INTEGER,
curr_connections INTEGER,
total_connections INTEGER,
connection_structures INTEGER,
cmd_get INTEGER,
cmd_refresh INTEGER,
cmd_set INTEGER,
get_hits INTEGER,
get_misses INTEGER,
refresh_hits INTEGER,
refresh_misses INTEGER,
bytes_read INTEGER,
bytes_written INTEGER,

189

13.6. PCRE CHAPTER 13. PACKAGES

limit_maxbytes INTEGER
END RECORD
DEFINE r INTEGER # return value
DEFINE mc INTEGER
DEFINE val INTEGER
DEFINE bytes INTEGER
DEFINE ok INTEGER # boolean
DEFINE req INTEGER # boolean?
DEFINE res INTEGER
DEFINE ptr INTEGER
USE a4gl_memcache
LET mc=mc_new()
LET r=mc_server_add(mc,host,port)
LET r=mc_server_add4(lv_mc,lv_host)
CALL mc_add(mc, key, val, bytes)
CALL mc_add_str(mc, key, val)
LET ok=mc_replace(mc, key, value, bytes)
LET ok=mc_replace_str(mc, key, value)
LET r=mc_req_new()
LET r=mc_req_add(req, key)
CALL mc_get(mc, req)
LET value=mc_aget_str(mc,key)
CALL mc_aget_rec(mc,key,ptr,bytes)
CALL mc_set(mc, key, value, bytes)
CALL mc_set_str(mc, key, value)
CALL mc_res_free_on_delete(res, ok)
CALL mc_res_free(req, res)
CALL mc_stats(lv_mc) RETURNING statrec.*
CALL mc_delete(mc, key)
CALL mc_incr(mc, key, val)
CALL mc_decr(mc, key, val)
CALL mc_free(mc)

13.6 pcre

This allows you to use perl style regular expressions within your 4GL pro-
gram.

190

CHAPTER 13. PACKAGES 13.7. POP

13.6.1 Dependancies

pcre - Perl Compatible Regular Expressions http://www.pcre.org/

13.6.2 Synopsis
DEFINE re CHAR(1024) # a perl RE (regular expr)
DEFINE s CHAR(1024)
DEFINE buff CHAR(255)
DEFINE i INTEGER # 1 .. 30
DEFINE OK INTEGER # boolean
USE a4gl_pcre
LET buff=pcre_text(i)
LET OK=pcre_match(re,s)

pcre_text(i) returns the matched portion of the string (up to 30 portions
are stored)

pcre_match(re,s) returns true if the string s matches the regular expression
re.

e.g.

IMPORT PACKAGE a4gl_pcre
MAIN

IF pcre_match("cat|dog","There was an old cat") THEN
DISPLAY "Matches to ",pcre_text(1)

ELSE
DISPLAY "No match"

END IF
END MAIN

13.7 pop

This module allows you to download and delete email from a pop3 server.
It is based on a small pop3 library created by Benoit Ruits. The original
motivation for creating the Aubit4GL package was that a huge volume of

191

13.7. POP CHAPTER 13. PACKAGES

spam emails was killing Spamassassin. So Mike Aubury wrote a 4GL pro-
gram dealing with this. You can find it in the source in
AUBITDIR/lib/extra_lib/pop in the file: pop_killer.4gl
All the functions popxxx() are from the pop package and we could have
called them using A4GL_pop::popxxx(). You should initiate a pop3 session
with a call to popbegin() supplying the server, userid, and password. You
close the session with a call to popend(). All the tedious details of setting
up sockets and freeing them are taken care of by Benoit’s libspop library.
The Aubit4GL package also trims variables appropriately.
Beware however that there is no provision for accessing or downloading
attachments to messages.

13.7.1 Dependancies

libspopc - http://brouits.free.fr/libspopc/index.html

13.7.2 Synopsis

Most of the Aubit4GL popxxx() functions are wrappers around the libspop
functions of the same name with the wrappers looking after details such as
trimming any string args to functions etc.

DEFINE c20 CHAR(20)
DEFINE c256 CHAR(256)
DEFINE server CHAR(256)
DEFINE userid CHAR(64)
DEFINE password CHAR(64)
USE a4gl_pop
LET c20=popget(i, ”From”) # or ”To”, ”Subject”, ”C”, ”Date”, or ”Size”
LET c256=poperr()
LET OK=popbegin(server, user, password)
LET n=popnum(i)
LET n=popbytes(i)
LET n=popmsgsize(i)
LET c256=popmsguid(i)
LET c256=popgetmsg(i)

192

CHAPTER 13. PACKAGES 13.7. POP

LET c256=popgethead(i)
CALL popcancel()
CALL popend()
CALL popdelmsg(i)

A sample program to give you the flavour of the pop library:

MAIN
DEFINE l_head CHAR(2048)
DEFINE l_body CHAR(2048)
DEFINE l_from CHAR(80)
DEFINE l_subject CHAR(80)
DEFINE i INTEGER
DEFINE n INTEGER
USE POP
DISPLAY "Connecting to server...."
IF popbegin("pop3.abc.com","john", "abc1234") then

DISPLAY "OK: Connected"
ELSE

DISPLAY poperr()
SLEEP 4
EXIT 1

END IF
LET n = popnum()
DISPLAY "You have", n using "####&"," Messages"
FOR i = 1 to n

LET l_head=popgethead(i)
LET l_body=popgetmsg(i)
LET l_from=popget(i, "From")
LET l_subject=popget(i, "Subject")
do some processing
CALL popdelmsg(i)

END FOR
IF int_flag THEN

CALL popcancel() #undo any popdelmsg(i)
END IF
CALL popend()

END MAIN

193

13.8. SMTP CHAPTER 13. PACKAGES

13.8 smtp

This allows you to send email from your 4GL program. This module is also
required if you wish to use ’REPORT TO EMAIL’ from within your 4GL
application.

13.8.1 Dependancies

A patched libsmtp - http://libsmtp.berlios.de.

13.8.2 Synopsis
DEFINE msg CHAR(200)
DEFINE server CHAR(200)
DEFINE addressee CHAR(512)
DEFINE mimetype CHAR(40)
DEFINE mimedesc CHAR(256)
DEFINE emailaddr CHAR(255)
DEFINE filename CHAR(255)
DEFINE hint CHAR(10)
DEFINE has_error INTEGER
DEFINE n INTEGER
DEFINE session INTEGER
DEFINE partno INTEGER
DEFINE partno2 INTEGER
DEFINE msgno INTEGER
DEFINE port INTEGER
DEFINE flags INTEGER
DEFINE ismine INTEGER
USE a4gl_smtp
CALL set_errmsg(msg)
CALL clear_err()
CALL set_server(server)
LET server=get_server() # defaults to $SMTP_SERVER or ”mail”
LET msg=get_errmsg()
LET session=start_message(lv_sender,lv_subject)
CALL add_recipient(session, addressee)
LET partno2=mime_type_new(msgno,partno, mimetype)

194

CHAPTER 13. PACKAGES 13.9. STRING

LET partno2=mime_type_new_with_description(msgno,
partno,mimetype,mimedesc)

LET partno
=mime_type_new(msg,0,"multipart/mixed")

LET lv_textpart
=mime_type_new(msgno,mixedpart,"text/plain")

IF filename MATCHES "*.pdf" or hint="PDF" THEN
let lv_pdfpart
=fgl_smtp::mime_type_new_with_description(lv_message,

lv_mixedpart,"application/pdf",lv_rep_filename)
ELSE

let lv_reppart
=fgl_smtp::mime_type_new_with_description(

msgno,mixedpart,"text/html",filename)
END IF
CALL connect(msg,server,port,flags,ismime)
CALL disconnect(msgno)
CALL send_to(msgno,emailaddr)
CALL send_to_cc(msgno,emailaddr)
CALL send_to_bcc(msgno,emailaddr)
CALL part_send_file_html_listing(msgno,lv_file,lv_last)
CALL part_send_file(msgno,lv_file,lv_last)
CALL send_report(hint,filename,emailaddr) # used by REPORT TO EMAIL

part_send_file() is called to actually send the mime encoding of the file. the
order in which these are used must match the order of the mime_type_new
sections created previously.

13.9 string

This module includes 3 string handling functions which may be useful from
within a 4GL program.

13.9.1 Dependencies

None

195

13.10. SXML CHAPTER 13. PACKAGES

13.9.2 Synopsis
DEFINE line CHAR(256)
DEFINE n INTEGER
DEFINE fields ARRAY[100] OF CHAR(256)
DEFINE haystack CHAR(512)
DEFINE needle CHAR(512)
DEFINE c CHAR(1)
USE a4gl_string
CALL split(line,n)

RETURNING fields[1], fields[2], ... fields[n]
LET n=strstr(haystack,needle)
LET n=strchr(haystack,c)

split() splits a string into up to 100 space separated fields
strstr() finds the first location of a string within a string (or 0)
strchr() finds the first location of a character within a string

13.10 sxml

The sxml package is a an Aubit4GL wrapper round a set library functions
from Fabrizio Bruno’s Freshmeat project SXML which facilitates the cre-
ation and reading of the limited set of XML commonly used in software
configuration files.
The Aubit4GL functions are mostly wrappers around functions of the same
name in the SXML library.
The SXML functions use C language pointers to XML structs. Pointers do
not exist in 4GL so they get coerced to INTEGER in the Aubit4GL wrap-
pers. The variables named xmlptr, xmlptr2, etc are INTEGERS serving as
pointers to the SXML tree structures.

13.10.1 Dependencies
sxml - http://freshmeat.net/projects/sxml/

196

CHAPTER 13. PACKAGES 13.11. DYNAMIC

13.10.2 Synopsis
DEFINE xmlptr, xmlptr2 INTEGER
DEFINE key CHAR(255)
DEFINE name CHAR(255)
DEFINE errbuff CHAR(255)
DEFINE value CHAR(1024)
DEFINE txt CHAR(32000)
USE a4gl_sxml
CALL sxml_free_tree(xmlptr)
LET xmlptr=sxml_readfile(fname) # Read file into an XML tree
LET ok=sxml_writefile(fname, xmlptr)
LET xmlptr2=sxml_get_next(xmlptr, key, n)
LET xmlptr2=sxml_get_sub(xmlptr, key, n)
LET value=sxml_get_value(xmlptr, key, n)
LET txt=sxml_get_xml_as_text(head, xmlptr)
LET xmlptr=sxml_put_next(xmlptr, name)
LET xmlptr=sxml_put_sub(xmlptr, name)
CALL sxml_put_value(xmlptr, value)
LET errbuf=sxml_curr_errstr()
LET errbuf=sxml_errstr(n)
LET n=sxml_get_errno()

The functions get_next and put_next operate on the nth node matching
key at the same level as the xmlptr.

The functions get_sub and put_sub operate on the nth node next matching
key at the first sublevel of the xmlptr.

13.11 dynamic

13.11.1 Dependencies

None

197

13.11. DYNAMIC CHAPTER 13. PACKAGES

13.11.2 Function list

This is a currently just list of all the Informix/4Js’s Dynamic 4GL functions
yet to be implemented...

198

Chapter 14

Extensions

Aubit4GL fully implements the syntax of classic Informix 4GL v7.3. But
further to that it has enhanced the language with many extra features.

14.1 Fake Comments {! ... !}

You can include A4GL extensions in your program code and still compile the
source with Informix 4GL compilers by enclosing A4GL specific statements
within the delimiters {! and !}. Aubit4GL will ignore the {! and !}
delimiters and compile the code enclosed. Informix 4GL compiles will see
the {! and !} as no different syntactically from { and } and will therefore
treat enclosed code as a comment (and therefore not try to compile it). This
allows you to write functions like the following:

function isaubit()
{! return true !}
return false

end function

199

14.2. ASSOCIATIVE ARRAYS CHAPTER 14. EXTENSIONS

14.2 Associative Arrays

To define an associate array:
DEFINE name ASSOCIATE [CHAR] (nc) WITH ARRAY [nx] OF datatype
Where nc is the number of characters to use for the index, and nx is the
total number of elements that may be stored.

Example:

DEFINE lv_desc ASSOCIATE [CHAR](1) WITH ARRAY[40] of CHAR(40)
LET lv_desc<�<"A">�>="Active"
LET lv_desc<�<"I">�>="Inactive"
LET lv_desc<�<"R">�>="Running"
LET lv_desc<�<"D">�>="Deleted"
LET lv_state="A"
.
.
DISPLAY lv_desc<�<lv_state>�>

(This is for illustration, the data would normally be read from a database!)

14.3 Paused Screen Handling

This enhances usability over the slower connection lines, no matter which
front-end implementation you deploy by selectively stopping updates to the
screen. Using

SET PAUSE MODE ON

all screen updates are stopped, until a

SET PAUSE MODE OFF

is issued. This means that you can completely redraw the screen and then
issue it to the user as a single screen rewrite, reducing cursor flicker as well
as giving a much faster update.

200

CHAPTER 14. EXTENSIONS 14.4. SLICES

14.4 Slices

Aubit4GL allows you to use an INPUT ARRAY or a DISPLAY ARRAY
statement on a slice of an array. Sample syntax:

DISPLAY ARRAY items SLICE (itemno THROUGH ext)
INPUT ARRAY items SLICE (itemno THROUGH ext)

For header-detail type forms, the Aubit4GL SLICE allows you to use an
existing form array and run the DISPLAY and/or INPUT ARRAY state-
ments on a contiguous subset of the fields (typically excluding the foreign
key fields) whereas standard 4GL would require you to declare a separate
array in both the form and in the 4GL program code.

14.5 TODO statement

Mike Aubury has introduced a new statement TODO ... END TODO sim-
ilar in structure to a CASE ... END CASE but which iterates until all its
WHEN branches are DONE.

TODO [condition]
WHEN condition
statements ...

IF cond THEN
DONE

END IF
...
[ALWAYS statements ...]

END TODO

The idea is that each WHEN must be marked DONE before the loop exits.
There is an optional conditional at the top of the loop which can also force a
premature exit, along with EXIT TODO and/or CONTINUE TODO. The
idea is to have a list of workflow and batch type operations - which can be
performed in any order - but all must be performed before we can proceed.
Each item is only executed when the WHEN condition is met - but the

201

14.6. ODBC DATA ACCESS CHAPTER 14. EXTENSIONS

DONEs must still be executed (ie. at some point - the WHEN condition
must evaluate to TRUE and the commands executed, resulting in a DONE)

There is also an ALWAYS item which shouldn’t/can’t be marked DONE but
is executed each time around the loop (maybe for a SLEEP, or a DISPLAY
etc.)

Eventually, Mike might look to see if each of these WHENs can get executed
on a separate thread - so it would be useful for writing parallel executing
code.

14.6 ODBC Data access

ODBC compliance is a crucial feature for unprecedented connectivity and
freedom of database options in the 4GL world.

14.7 Concurrent Connections

Based on the ODBC access concept, this feature will enable you to not only
easily open several databases at the same time, and keep them open, but
also to open several databases from several vendors from different servers,
bringing together all database resources in corporate environments.

14.8 Constants

Aubit4GL allows you to define a CONSTANT in one place (for example
to define an array size) then refer to it throughout all the modules in a
program. To increase the array, simply edit the DEFINE CONSTANT
statement and recompile. In standard 4GL, you have to find every instance
of the value of the constant and change it before recompiling with the risk
of having missed some.

Syntax:

DEFINE CONSTANT pi 3.1415923
DEFINE CONSTANT codemax 256

202

CHAPTER 14. EXTENSIONS 14.9. CALLBACK FUNCTIONS

14.9 Callback Functions

Aubit4GL has three extensions to the classic 4GL grammar which allow the
programmer to write callback functions:

• CONSTRUCT ... VIA viafunc

• SORT arrayvar USING sortfunc [LIMIT n]

• LOAD FROM file USING FILTER filterfunc
INSERT INTO tabname [(col, ...)]

In the above statements viafunc, sortfunc, and filterfunc are callback func-
tions - i.e programmer supplied functions which the Aubit4GL program will
call to perform lower level operations.

The callback functions allow you to modify at low level the behaviour of
the CONSTRUCT, SORT, and LOAD statements.

14.9.1 CONSTRUCT VIA

Aubit4GL now allows you to write code like this:

CONSTRUCT lv_str ON a,b
FROM a,b
VIA viafunc

The VIA clause is an Aubit4GL extension.

The viafunc is a user supplied function which takes 5 parameters and
returns the required SQL boolean expression.

The parameters which Aubit4GL’s CONSTRUCT statement will pass to
the callback function are:

1. Table Name: char(18)

2. Column Name: char(18)

3. String: char(300)

203

14.9. CALLBACK FUNCTIONS CHAPTER 14. EXTENSIONS

4. Type: integer

5. Length: integer

You use these however you wish to generate an appropriate SQL boolean ex-
pression which will be PREPAREd and EXECUTED (usually in a FOREACH
loop).
In standard CONSTRUCT statements, Aubit4GL builds the boolean for
each field using its builtin function:
aclfgl_get_construct_element()
which takes the same 5 parameters as above.

14.9.1.1 VIA Example

MAIN
DEFINE a RECORD
a CHAR(10),
b CHAR(20)
END RECORD

DEFINE lv_str CHAR(200)
OPEN WINDOW w1 AT 1,1 WITH FORM "f1"

Here - we want to use a callback function in the
construct to allow us to amend the CONSTRUCT string
before the construct returns it.
#
This can be used (for example) to automatically add
’*’ around the string, or to search an address
(by doing something like
’(addr1 MATCHES .. OR addr2 MATCHES ...)’ etc etc
#
CONSTRUCT lv_str ON a,b from a,b VIA viafunc
DISPLAY lv_str
CLOSE WINDOW w1

END MAIN
FUNCTION viafunc(lv_tabname, lv_colname,

lv_string,lv_dtype, lv_dtypelength)
DEFINE lv_tabname CHAR(18)
DEFINE lv_colname CHAR(18)
DEFINE lv_string CHAR(300)

204

CHAPTER 14. EXTENSIONS 14.9. CALLBACK FUNCTIONS

DEFINE lv_dtype,lv_dtypelength INTEGER
Normally - we’d want to generate the construct portion
- but with maybe different column names
In this callback we want to map ’a’ to be ’blah’...
#
IF lv_colname="a" THEN

aclfgl_get_construct_element takes 5 parameters
tablename, column name, search string,
datatype and datatype length
(eg for decimal or character length)

LET lv_string=aclfgl_get_construct_element(
lv_tabname , "blah", lv_string ,
lv_dtype, lv_dtypelength)

ELSE
LET lv_string=aclfgl_get_construct_element(
lv_tabname , lv_colname , lv_string ,
lv_dtype, lv_dtypelength)

END IF
RETURN lv_string

END FUNCTION

This gives total flexibility, because we need to return the string for each field.
Normally we can just call the default aubit4gl function to generate that
string (aclfgl_get_construct_element()), but we dont need to use that,
or we can call it with different parameters from what the CONSTRUCT
would use.

In the following example, the programmer wants to select data from a dif-
ferent column depending on whether the length of the vin value is more
than 8 chars or not (assuming the column is called vin on the form) :

FUNCTION viafunc(lv_tabname, lv_colname,
lv_string,lv_dtype, lv_dtypelength)
DEFINE lv_tabname CHAR(18)
DEFINE lv_colname CHAR(18)
DEFINE lv_string CHAR(300)
DEFINE lv_dtype,lv_dtypelength INTEGER
IF lv_colname="vin" THEN
IF length(lv_string)=8 THEN

205

14.9. CALLBACK FUNCTIONS CHAPTER 14. EXTENSIONS

LET lv_colname="vin8"
END IF
IF length(lv_length)>8 THEN
LET lv_colname="vinunq"

END IF
END IF
RETURN aclfgl_get_construct_element(

lv_tabname , lv_colname, lv_string ,
lv_dtype, lv_dtypelength)

END FUNCTION

14.9.2 SORT ... USING sortfunc

In classical 4GL, sorting arrays is clumsy, partly because you cannot pass
arrays to and from functions, and partly because there is no builtin sort
function. Aubit4GL improves on this with 3 extensions:

• SORT arrayvar USING sortfunc [LIMIT n] statement which allows
the programmer to sort an array relying on the callback function to
apply the appropriate ordering of successive rows in the array. If you
suppy the LIMIT n clause, the sort will apply only to the first n rows.

• COPYOF operator which can bulk-copy (using the C library function
memcpy()) an array or record to a function argument

• COPYBACK operator which reverses the action of COPYOF by bulk-
copying back to its source variable

sortfunc() is a user supplied function which takes 2 identical COPYOF
arguments:
sortfunc(COPYOF arg1, COPYOF arg2)
with arg1 and arg2 DEFINEd as a record to match each row of the
array to be sorted and returning -1 or 0 or +1 meaning less than,
equal to, or greater than respectively. Aubit4GL will pass rows, 2 at
a time, to the function and rely on the return value to rank them.

COPYOF is an operator for function arguments which tells the Aubit4GL
compiler to use the C-library function memcpy() to bulk-copy a large
mass of data in one operation to the 4GL function stack. In standard

206

CHAPTER 14. EXTENSIONS 14.9. CALLBACK FUNCTIONS

4GL all the elements of a record are pushed individually onto the
stack and then pulled off individually. This not efficient in a data and
memory intensive operation such as sorting where there will be very
many such calls to the callback function. The use of the COPYOF
operator allows the fastest possible function call and return. Another
benefit of COPYOF (not used in the context of SORT ... USING
callback) is that this operator takes the curse off the passing of arrays
to a function (an operation which results in a compile-time error in
standard 4GL).

COPYBACK is the reciprocal of COPYOF and can be used to return
large local data structures (e.g. records or arrays) using the C-library
function memcpy(). The syntax is:
COPYBACK varname
which will overwrite the original source variable with the current data
in varname local to the callback function. (Aubit4GL remembers
where it copied it from at function invocation and performs memcpy()
with the original arguments reversed.)

14.9.2.1 Example code

This example shows how to use the Aubit4GL statement: SORT ... USING
sortfunc

DATABASE test1
DEFINE lv_array ARRAY[100] OF RECORD LIKE systables.*
FUNCTION qsort_tabname(COPYOF lv_sys1, COPYOF lv_sys2)
DEFINE lv_sys1,lv_sys2 RECORD LIKE systables.*
IF lv_sys1.tabname>lv_sys2.tabname THEN RETURN 1 END IF
IF lv_sys1.tabname=lv_sys2.tabname THEN RETURN 0 END IF
RETURN -1

END FUNCTION
MAIN
DEFINE lv_cnt integer
DEFINE lv_a integer
DECLARE c1 CURSOR FOR

SELECT * FROM systables WHERE tabid<99
LET lv_cnt=1
FOREACH c1 INTO lv_array[lv_cnt].*

207

14.9. CALLBACK FUNCTIONS CHAPTER 14. EXTENSIONS

LET lv_cnt=lv_cnt+1
END FOREACH
FOR lv_a=1 TO 100

IF lv_array[lv_a].tabname IS NOT NULL THEN
DISPLAY "BEFORE:",lv_array[lv_a].tabname CLIPPED

END IF
END FOR
SORT lv_array USING qsort_tabname
FOR lv_a=1 TO 100
IF lv_array[lv_a].tabname IS NOT NULL THEN

DISPLAY "AFTER :",lv_array[lv_a].tabname CLIPPEd
END IF

END FOR
END MAIN

14.9.2.2 Example 2

This example shows how you can (in Aubit4GL) use COPYOF to pass
arrays to and from functions saving a lot of time if passing identical large
structures. Omit the COPYOF in the example, and the 4GL compiler will
produce a compile time error.

DEFINE cnt INTEGER
DEFINE a ARRAY[20] OF RECORD

b CHAR(20),
c INTEGER

END RECORD
MAIN
DEFINE b ARRAY[20] OF RECORD

b CHAR(20),
c INTEGER

END RECORD
FOR cnt=1 TO 20

LET a[cnt].b=cnt
LET a[cnt].c=cnt

END FOR
CALL bibble(COPYOF(a))
FOR cnt=1 TO 20

208

CHAPTER 14. EXTENSIONS 14.9. CALLBACK FUNCTIONS

DISPLAY ">", a[cnt].b," ", a[cnt].c," <"
END FOR

END MAIN
FUNCTION bibble(COPYOF lv_a)
DEFINE lv_a array[20] OF RECORD

b CHAR(20),
c INTEGER

END RECORD
FOR cnt=1 TO 20
DISPLAY ">", a[cnt].b," ",
a[cnt].c," <", lv_a[cnt].b," ",
lv_a[cnt].c

LET lv_a[cnt].b=99-cnt
END FOR
COPYBACK lv_a

END FUNCTION

Notice that both the CALL and the FUNCTION definition need the COPYOF
operator applied to their arguments.

Here lv_a is a local copy of the array a. Instead of passing in 40 separate
parameters (two for each element in the array), we just pass in a single block
of memory. Internally Aubit4GL uses the C function memcpy() to copy this
over the lv_a when the function is called, so it is a byte for byte copy.

(The sizes of the COPYOF parameter must match - or an error is flagged
up)

Now, the normal behaviour (if the COPYBACK is commented out) would
be that, at the end of the function, the changes made to lv_a would be lost.
But as it was a COPYOF parameter, we can copy those details back to the
original array a using the COPYBACK command(which basically does a
memcpy() the other way).

14.9.3 LOAD ... USING FILTER fname ...

Aubit4GL has added an optional USING FILTER filterfunc clause to the
4GL LOAD command.

Syntax:

209

14.9. CALLBACK FUNCTIONS CHAPTER 14. EXTENSIONS

LOAD FROM filename
USING FILTER filterfunc
INSERT into tabname[(col, ...)]

The filter function needs to return the data to insert (one value per column)
and can return 0 values, in which case the line is ignored and no insert
performed.
There is a builtin CSV parser filter function available:
aclfgl_parse_csv()
which you can use to load a CSV file. e.g. :

LOAD FROM myfile.csv
USING FILTER aclfgl_parse_csv
INSERT INTO mytab

The callback function takes a string which is the entire line from the load
file and returns the individual columns to insert. Returning no values means
that that line in the file will be skipped. This can be very useful for data
validation (only load certain rows) or ensuring foreign keys exist etc. (or
possibly inserting blank ones).
There is a new builtin function
aclfgl_split_on_delimiter()
which can be used to split the fields. e.g. :

CALL aclfgl_split_on_delimiter ("A|B|C|")
RETURNING lv_rec.*

CALL aclfgl_split_on_delimiter ("#","A#B#C#")
RETURNING lv_rec.*

Obviously, this adds possibilities over and above inserting data. For ex-
ample, you could LOAD the /etc/passwd with a callback which calls the
above split function but returns nothing so that it won’t try to do any inserts
but you will have captured the values in an array of 4GL RECORDs.
There is a variant of the LOAD command which takes a variable holding
the INSERT statement:

LOAD FROM file USING FILTER filtfunc varname

210

CHAPTER 14. EXTENSIONS 14.10. ERROR HOOKS

The variable varname would contain something like:

INSERT into mytab

14.10 Error Hooks

At the instigation of Andrej Falout, Mike Aubury has altered error handling
in Aubit4GL.

Now when an error occurs (other than one which causes a core dump or is
the result of EXIT PROGRAM), the program calls a function errlog() in a
shared (i.e. dynamically linked) library.

To customise error handling you do the following:

• write a function errlog() as per example below in a file say myerr.4gl

• compile myerr.4gl
4glpc --as-dll myerr.4gl

• put the compiled myerr.so somewhere sensible
where it will be found because of LD_LIBRARY_PATH or ldconfig

• export A4GL_ERRHOOK=myerr
Note: No need for .so or .dll suffix

There is a default implementation of the errlog() function in the standard
Aubit4GL libraries.

14.10.1 A4GL_ERRHOOK

You can write your own shared library and set an environment variable
A4GL_ERRHOOK to use your library implementation of errlog() instead
of the default.

You don’t need to link anything with your application.

211

14.10. ERROR HOOKS CHAPTER 14. EXTENSIONS

14.10.2 errlog()

The function errlog() takes 4 parameters

1. Line Number: integer

2. Module Name: char(64)

3. Error Number: integer

4. Error Message: char(1024)

It does not return a value.

14.10.3 Example

Mike Aubury has created an illustrative example in
lib/extra_libs/errhook in the aubit4gl source directory

You’ll find there a makefile, a README, and a 4gl module: sample.4gl

sample.4gl simply DISPLAYs all the information you could think of. but it
would be easy to modify it to output via a report and send the result via
email etc.

Heres an example output (We have wrapped some lines for this book):

**
* ERRHOOK
**
* User : aubit4gl
* Time : 2007-12-13 17:49:27
* Module : menuprog.4gl
* Line : 70
* Error : -3002
* PID : 11577
* lastkey : 2016
**
* ScrDump : /tmp/scr.out.err_11577
**

212

CHAPTER 14. EXTENSIONS 14.10. ERROR HOOKS

Customer Maintenance: Query Next Previous FireErr Add
Update Delete Exit

[]
Customer Number [2] Customer Name [ABC CHEMICALS PLC]
Customer Address [Water Way.]
[Runcorn]
[Cheshire]
[WA7 9LN]
[]
Telephone Number [01925 849313]
Account Type [2]
Account Description [Credit: 60 days]
6 Record(s) have been found
**
* Errmsg :
* Program ./menuprog stopped at ’menuprog.4gl’,

line number 70.
* Error status number -3002.
* Wrong number of parameters passed to function.
*
* 4gl function call stack :
* menuprog.4gl (Line 8) calls MAIN
**

To compile and use Mike’s sample.4gl:

cd lib/extra_libs/errhook
make
export CALLERRHOOK=errhook_sample

14.10.4 sample.4gl
function errlog(ln,mod,err,errmsg)
define ln integer
define mod char(64)
define err integer
define errmsg char(1024)

213

14.10. ERROR HOOKS CHAPTER 14. EXTENSIONS

define lv_cline char(2000)
define lv_continue integer
define a integer
define lv_fname_scrdump char(300)
define lv_l text
let lv_fname_scrdump="/tmp/scr.out.err_",

fgl_getpid() using "<�<�<�<�<�<"
call aclfgl_dump_screen(lv_fname_scrdump)
locate lv_l in file lv_fname_scrdump
display "**"
display "* ERRHOOK "
display "**"
display "* User : ", aclfgl_get_user()
display "* Time : ", current year to second
display "* Module : ",mod clipped
display "* Line : ",ln
display "* Error : ",err
display "* PID : ",fgl_getpid()
display "* lastkey : ",fgl_lastkey()
display "**"
display "* ScrDump : ",lv_fname_scrdump clipped
display "**"
display lv_l
display "**"
display "* Errmsg :"

The error message contains embedded \n’s which mess up
the display..
here we’re just searching for them
and using them as delimiters
let lv_continue=1
while lv_continue

let lv_continue=0
for a=1 to length(errmsg)
if ord(errmsg[a])=13 then
let errmsg[a]=’ ’
end if
if ord(errmsg[a])=10 then
if a>1 then
display "* ", errmsg[1,a-1]

214

CHAPTER 14. EXTENSIONS 14.11. MAP FILES

else
display "*"
end if
let errmsg=errmsg[a+1,1024]
let lv_continue=1
exit for
end if
end for

end while
if length(errmsg) then

display "* ", errmsg clipped
end if
display "**"

end function

14.11 Map Files

These will for the first time enable you to have full overview of what your
code is doing, how, and where. Indispensable for debugging and under-
standing unfamiliar code, and the behaviour of the compiler.

14.12 New Types

Aubit4GL allows you to define a new type once then refer to that type
whenever you need to create a variable or parameter of that type. e.g.

DEFINE NEW TYPE staff
RECORD

staffno INTEGER,
surname CHAR(20),
firstname CHAR(20),
addr1 CHAR(20),
....

END RECORD
DEFINE person staff
LET person.staffno = 205

215

14.13. VARIABLE IDS CHAPTER 14. EXTENSIONS

LET
...
OUTPUT REPORT stafflist(staff)

14.13 Variable IDs

You can specify and reference all 4GL objects in the.

_variable (str) is used to replace hard coded identifiers. e.g for PRE-
PARE statements or CURSOR names or WINDOW names

So

OPEN WINDOW w1 at at 1,1 WITH 10 ROWS, 10 COLUMNS

could be written as

LET lv_str="w1"
OPEN WINDOW _variable(lv_str) at at 1,1 WITH 10 ROWS, 10 COLUMNS

Might seem a little unnecessary at first - but what if you wanted to open
20 windows ?

14.14 Passing IDs

Passing IDs to functions is one of the implications of Variable IDs. It will
allow you to use _variable(str) to name objects passed to functions, even
in another module.

14.15 Embedded C code.

No more messing around with external C code, and no more complex make
and link process. Just embed your C code inside your 4GL code, between
the keywords CODE ... ENDCODE.

216

CHAPTER 14. EXTENSIONS 14.15. EMBEDDED C CODE.

When you use a FUNCTION fname() statement, Aubit4GL applies a prefix
aclfgl_ to your function name thereby renaming it
aclfgl_fname()
in the .c file which the compiler generates. Aubit4GL does this to avoid
inadvertent clashes with the names of C-library standard functions.

If, for example, you wrote a function:

FUNCTION printf()
...
END FUNCTION

and Aubit4GL did not mangle the function name, your code would not be
able any longer to access (within CODE ... END CODE) the standard
C-library function printf()

You can change this by setting A4GL_NAMESPACE to a different prefix
or eliminate it entirely:

$ export A4GL_NAMESPACE=""
$ 4glpc mod.4gl

You will need to make sure that all your modules are compiled like this, or
you’ll have the same trouble calling functions across 4GL modules!

Don’t forget that Aubit4GL lets you embed blocks of C code which may
also help you. e.g. :

MAIN
DEFINE a CHAR(5)
LET a="World"
CODE
{
printf("Hello %s",a);

}
ENDCODE
END MAIN

This saves all the trouble of having to push/pop from the 4gl stack.

217

14.16. MOVE WINDOW CHAPTER 14. EXTENSIONS

14.16 MOVE WINDOW
MOVE WINDOW w1 TO row, col
SHOW WINDOW w1
HIDE WINDOW w1

Enhanced windows manipulation resulting in more usable and flexible user
interfaces.

14.17 WHENEVER
WHENEVER SUCCESS statements
WHENEVER SQLSUCCESS statements

Will give you new options for conditional code execution, instead of always
depending on error conditions.

14.18 Multilevel Menus

User interface enhancement that will make the coding and using applications
faster and easier.

14.19 Extended DISPLAY

Control providing many of features of INPUT ARRAY, and dynamically
setting current and display lines of array. This will eliminate the need to
use INPUT ARRAY logic where input is not needed, making the result safer
and the code cleaner and easier to maintain.

14.20 Extended USING

Syntax provides more options for commonly used date formatting in reports
and on the display, without the need to write additional code to handle this
formatting, making especially report writing more productive.

218

CHAPTER 14. EXTENSIONS 14.21. LOCAL FUNCTIONS

14.21 Local functions

Defining a function to be local to the module opens possibilities fore some
interesting and productive program structuring, and can also contribute to
more easily maintainable and problem-free code.

14.22 get_info function

The get_info function will enable you to get almost all of the information
about the state of the running program at runtime. It will allow you to write
more flexible code than ever before, and achieve tasks that were simply not
possible with other x4GL compilers.

14.23 a4gl_get_info()

An example :

DATABASE loadz
MAIN
DEFINE lv_cnt INTEGER
DEFINE lv_a INTEGER
DEFINE lv_name CHAR(18)
DEFINE lv_type,lv_length,lv_scale INTEGER
PREPARE p1 from "select * from customer2"
CALL a4gl_get_info("Statement","info_p1","NoColumns")
RETURNING lv_cnt

DISPLAY lv_cnt , " columns"
FOR lv_a=1 to lv_cnt
CALL a4gl_get_info("Statement","info_p1",

"Name"||lv_a using "<�<�<�<�<")
RETURNING lv_name

CALL a4gl_get_info("Statement","info_p1",
"Type"||lv_a using "<�<�<�<�<")

RETURNING lv_type
CALL a4gl_get_info("Statement","info_p1",

219

14.24. GET_ERROR_DETAILS() CHAPTER 14. EXTENSIONS

"Length"||lv_a using "<�<�<�<�<")
RETURNING lv_length

CALL a4gl_get_info("Statement","info_p1",
"Scale"||lv_a using "<�<�<�<�<")

RETURNING lv_scale
DISPLAY lv_name, " ",lv_type ," ",lv_length, " ", lv_scale

END FOR
END MAIN

14.24 get_error_details()

An example:

MAIN
WHENEVER ERROR CALL bibble
OPEN c1 # not declared - so it should error...

END MAIN
FUNCTION bibble()

DEFINE lv_line INTEGER
DEFINE lv_mod CHAR(255)
DEFINE lv_msg CHAR(255)
DEFINE lv_stat INTEGER
CALL aclfgl_get_error_details()
RETURNING lv_line,lv_mod,lv_stat,lv_msg

DISPLAY "There was an error : "
DISPLAY "in module: ", lv_mod CLIPPED," line ",lv_line
DISPLAY "status = ",lv_stat," sqlca.sqlcode=", sqlca.sqlcode
DISPLAY "message : ",lv_msg CLIPPED

END FUNCTION

14.25 Dynamic Form Fields

Dynamic form fields are enabled by setting the attributes as follows:

f001=tabname.fieldname, dynamic size=N ;

where N is the maximum size to be allowed.

220

CHAPTER 14. EXTENSIONS 14.26. REMOTE FUNCTIONS

These allow input fields to accept more data than will fit in the visible screen
field size, making for more usable and flexible user interfaces.

14.26 Remote Functions

Will make x4GL applications for the first time enter the n-tier world. Run-
ning programs on the same or different machines, or even platforms, call
each other to execute functions and return results. This can not only en-
hance typical 3-tier role separation, but also facilitate multi-processing on
the level of the application, application partitioning on protocol level and
enable weird things like accessing UNIX database from Windows PC that
have no ODBC drivers for a specific platform....

14.27 LINKED TO

Aubit4GL allow us to link a record to a table and record it’s primary key.
The statement:

DEFINE r LINKED TO tab PRIMARY KEY(col1)

effectively DEFINEs r as a RECORD LIKE tab and tells the compiler that
col1 is its primary key. Having done that we can set the values of the record’s
primary key field to a value and use the following Aubit4GL statements:

INSERT USING r
SELECT USING r
UPDATE USING r
DELETE USING r

An example program:

DATABASE test1
DEFINE lv_systables LINKED TO systables primary key (tabid)
MAIN

LET lv_systables.tabid=1

221

14.28. ON ANY KEY ETC CHAPTER 14. EXTENSIONS

SELECT USING lv_systables
DISPLAY "Hello World : ",lv_systables.tabname

END MAIN

The compiler generates the appropriate WHERE x=y automatically. e.g.:

SELECT USING lv_systables

becomes under the bonnet:

SELECT * INTO lv_systables.* FROM systables
WHERE systables.tabid=lv_systables.tabid

You have saved yourself a lot of typing!

14.28 ON ANY KEY etc

Aubit4GL has extended the INPUT ARRAY and DISPLAY ARRAY state-
ments to react to events other than the standard ON KEY (key)

Examples:

ON ANY KEY statements

ON IDLE 5 MINUTES statements

ON INTERVAL 10 SECONDS statements

ON CHANGE(field) statements

14.29 Compile Time Environment

This can override many library settings at compile time and will enable
you to control compiler behaviour in ways not imaginable with other x4GL
compilers

222

CHAPTER 14. EXTENSIONS 14.30. SCHEMA V DATABASE

14.30 SCHEMA v DATABASE
SCHEMA dbname -- (for compile time)
MAIN
DEFINE l_dbname CHAR(64)
DATABASE l_dbname -- (for runtime)
...

END MAIN

When you use the DATABASE statement at the top of a program, 4GL
will connect you to the database when it enters the MAIN function. If
however you replace the usual DATABASE keyword with SCHEMA at the
head of the file containing the MAIN function, Aubit4GL will not connect
to the database on beginning execution of MAIN - you will need to explicitly
place a DATABASE statement in MAIN or use CONNECT or SESSION
statements

The SCHEMA statement (a 4Js extension implemented by Aubit4GL for
compatibility with 4J) will allow you to compile against a local database
intending to run against a different database at runtime (perhaps on a
different server).

You can also use a schema file instead of a database connection at compile
time if you do the following:

Run the command:

adbschema -d dbname -fileschema > dbname.schema
export A4GL_SQLTYPE=FILESCHEMA

Now, in your program, use the usual DATABASE statement at the top of
the file:

DATABASE dbname
MAIN

...
END MAIN

The format of the dbname.schema file is :

223

14.31. SESSIONS CHAPTER 14. EXTENSIONS

[table1]
column datatype size
column datatype size
column datatype size
[table2]
column datatype size
column datatype size
column datatype size
etc...

14.31 SESSIONS

Use the SESSION statements to access different databases within the same
program.

(One limitation is that you cannot link across databases in a single query.)

Example:

MAIN
DEFINE lv_a CHAR(10)
OPEN SESSION s_id1 TO DATABASE test1
OPEN SESSION s_id2 TO DATABASE test2
USE SESSION s_id1 FOR SELECT USER INTO lv_a
FROM systables WHERE tabid=1

DISPLAY lv_a
USE SESSION s_id2 FOR SELECT USER INTO lv_a
FROM systables WHERE tabid=1

DISPLAY lv_a
SET SESSION s_id1
...

END MAIN

14.32 Application Partitioning

Thanks to user interface layer on one side, and ODBC layer on the other, and
combined with RPC calling functionality, it is now possible to fully utilize all

224

CHAPTER 14. EXTENSIONS14.33. Y2K RUNTIME TRANSLATION

the resources of the enterprise environment, end-to-end, and deploy a4GL
programs from one single computer, to hundreds of connected computers
running different or same layers.

14.33 Y2K Runtime Translation

Two digit year support is implemented using run-time environment variable
setting, enabling you to dynamically decide interpretation of year while
preserving the code that was not written using 4 digit year functionality.
Aubit 4GL is, of course, fully Y2K compliant.

14.34 Globbing

You can freely mix and use all IDs as module specific or global, allowing you
do make distinction when naming ID’s at runtime, thanks to Variable IDs
and the ability to pass IDs to functions as parameters. This functionality
alone can save significant time in the coding process, and allow you to isolate
ID related problems easily.

14.35 A4GL Wizard

14.35.1 Program Templates

These will allow the generation of full 4GL code for typical table oriented
screens, just by specifying and compiling the template with a few simple
definitions, much in the way that users used to use the Informix ISQL tool,
but with full code generation and unprecedented flexibility, even to the point
of direct inclusion in other 4GL programs.

14.36 PDF Reports

Built using PDFlib, allows you to produce reports in PDF format with fancy
fonts. In particular, PDF Reports are useful for producing barcodes. See
the separate chapter on PDF reports.

225

14.37. GUI CHAPTER 14. EXTENSIONS

14.37 GUI

Built using GTK+, this can allow normal 4GL programs to substitute a
GUI version of the normal ASCII form based screens. Alternatively, you
can exploit Aubit extensions to the classic language to create GTK widgets
(e.g. cascading menus, pulldown lists, checkboxes, dialogues, etc.)
This facility will not be developed any further. We advise you to use the
new Display Clients which are documented elsewhere in this manual

14.38 Packages

This is a feature borrowed from languages like Java, perl, and Python. It
allows you to call functions from external shared libraries using normal
CALL function() syntax.

CALL library::function()
or
CALL library.function()

14.39 a4gl IDE

14.39.1 Independent Development Environment

Written completely in 4GL, this application facilitates rapid development
of any x4GL language application, while thanks to available source code
remaining fully customizable using tools and language familiar to any 4GL
language developer. FIXME: add JL’s instructions to Development En-
vironment page Please see appropriate sections of A4GL enhancements to
standard x4GL language for details of all features and syntax.

14.40 Logical Reports

These allow existing reports to be output as CSV, PDF or text files. These
can be printed, saved to a file, etc - just like a normal 4GL report, and can
also be automatically emailed to a recipient.

226

Chapter 15

ACE reports

Informix has a set of report utilities which generate, compile, and run ACE
reports. The default ACE report looks like this:

DATABASE mydb END
SELECT

col1,
col2,
....

FROM tab1 END
FORMAT EVERY ROW END

Informix source files have the suffix: .ace. The Informix program aceprep
compiles source into a binary with suffix .arc. Another program acego runs
the binary to produce output.
If you have legacy ACE reports, you may use the Aubit4GL utilities to create
4GL source which you may then compile and run. Aubit4GL provides a set
of utilities:

• generate_aace to create default ACE reports

• aace workalike for aceprep

• aace_runner workalike for acego

227

15.1. AACE CHAPTER 15. ACE REPORTS

• aace_4gl translates .aarc binary to 4GL source

• aace_perl translates .ace or .aace file to perl (needs report.pm)

15.0.1 generate_aace

generate_aace will produce default Informix-style ACE report for a given
database and table. The generated file should be given a .aace or a .ace
suffix added to the table name.

generate_aace -d mydb -t agents > agents.aace

15.1 aace

aace will translate a .aace file into a .aarc binary file

aace agents

will create a binary file: agents.aarc from agents.[a]ace

15.2 aace_4gl

aace_4gl translates a .aarc file and outputs a .4gl file on stdout. You
can compile this with 4glpc to make an executable.

aace_4gl agent[.aarc] > agent.4gl

ACE reports and 4GL reports have traditionally behaved differently in their
handling of aggregates. 4GL sum() and group sum() return the counts or
rows processed so far, while ACE total of and group total of return
the aggregate of all data. Mike Aubury has added a Compatibility option
to force the ACE behaviour.

The new compatibility options are: -C, -I, -B

228

CHAPTER 15. ACE REPORTS 15.2. AACE_4GL

15.2.1 -C Compatibility

Mike Aubury has added a -C option to aace_4gl which generates code which
should match the normal ACE behaviour, at the expense of populating and
querying a temporary table...

It should autodetect if it can ignore the compatibility mode if it is not
required, so you should be safe to -C the aace_4gl anyway..

15.2.2 -I Insert Cursor

There is also another option -I which uses an INSERT cursor to speed up
the report (only required if you use -C).

15.2.3 -B Batch Size

you can also specify a batch size with -B..

So for some examples :

aace_4gl -C m1.aarc -o m1.4gl

or

aace_4gl -C -I m1.aarc -o m1.4gl

or

aace_4gl -C -I -B 100 m1.aarc -o m1.4gl

229

15.2. AACE_4GL CHAPTER 15. ACE REPORTS

230

Chapter 16

New Display Clients

16.1 New GUI Front Ends

New with version 1.2 of Aubit4GL is support via an XML protocol for
separate Graphical front end applications to provide display services for
Aubit4GL programs in the spirit of X display servers.

16.1.1 History

16.1.1.1 TUI

The Aubit4GL project began with support for the traditional ASCII Infor-
mix form files displaying on an 80x24, 80x25, or 128x24 character screen.
This is still the default for Aubit4GL but it can be enforced by setting
A4GL_UI=TUI.

16.1.1.2 GTK

Then support was added for rendering the same forms in a graphical user
interface using the GNOME Tool Kit (GTK) library. This rendered the
standard Informix menus and form fields with graphical equivalents from
the GTK library.

231

16.1. NEW GUI FRONT ENDSCHAPTER 16. NEW DISPLAY CLIENTS

16.1.1.3 HL_TUI, HL_GTK

Later the Aubit4GL syntax was extended to give specific support for graph-
ical widgets (BUTTON, COMBO, LABEL, PIXMAP, TEXT, etc). In or-
der to support further expansion of graphical capabilities, Mike Aubury
embarked on splitting the interface code into High Level code (with a prefix
HL e.g. HL_TUI) with common calling functions. The idea was that the
possible graphical interfaces of the future would share the same High Level
interface and implement the functionality with calls to the various libraries
in C++, C#, and Java through their C interfaces.

With version 1.2 onwards this approach has lapsed. For the non-graphical
text user interface, use TUI (not HL_TUI) by setting A4GL_UI=TUI.

16.1.1.4 Graphical Front Ends

For graphical user interfaces, you can still use GTK by setting
A4GL_UI=HL_GTK,
but there will not be much future development of the GTK GUI. Its place
is being taken by a new generation of graphical front ends being built by
commercial enterprises which are part of the Aubit4GL fraternity. These
draw their inspiration from 4Js applications and emulate much of their style
and syntax.

At the time of writing early July 2010, the most advanced of these is Ventas
Display Client (VDC) from
www.ventas.de.

There are also a C# application and a Java application in the wings all
using the same XML protocols to interface with 4GL programs.

Aubit4GL now has a XML formats (DTDs) for

• Forms. The command fcompile -xml <formname> will produce an
XML file understood by the new generation of graphical front ends.
Even if you haven’t compiled your .per file to XML, Aubit4GL will
convert your .afr file to xml on the fly provided you have set A4GL_UI=XML.

• Client -> 4GL. An XML protocol for sending user input from the front
end client to a 4GL program (remote or local)

232

www.ventas.de

CHAPTER 16. NEW DISPLAY CLIENTS 16.2. VDC

• 4GL -> Client. An XML protocol for sending data and commands
from the Aubit4GL program to a graphical front end.

16.2 VDC

VDC (Ventas Display Client) is a rich thin client application which provides
a Graphical User Interface (GUI) to Aubit4GL programs.
Ventas have initiated the development of a front end graphic user interface
to display both Informix 4GL traditional forms and a newly devised, more
graphics-oriented XML format which displays standard GUI objects such
as pull-down menus, buttons, popup lists, arrayed vertically, horizontally,
or in tabbed pages.
The VDC frontend is written in C++ and uses the QT4 libraries to imple-
ment the graphics. QT from Trolltech is available in Linux, Apple OSX, and
Microsoft so that the VDC front ends are able to be on platforms separate
from the server running the Aubit4GL programs.

16.3 Requirements

Assuming that you have installed both the Ventas Display Client and Au-
bit4GL either on the same or different machines, they will communicate
with each other using TCP/IP with an agreed port (default: xxxx) and
using an agreed XML format.
To run the VDC, you will need to run the back end 4GL program with the
following environment variables set :
A4GL_UI=XML
AFGLSERVER=ip.address.of.client
and if you choose to operated via a proxy:
PIPEDIR=/path/to/dir
BASEPROGRAMS=/path/to/dir
The forms used by both front end and back ends need to be in XML format
(which requires the environment variables):

233

16.4. VENTAS DISPLAY CLIENTCHAPTER 16. NEW DISPLAY CLIENTS

16.4 Ventas Display Client

16.4.1 Linux

Note : On Linux we recommend compiling from source if possible.

16.4.1.1 Source

Make sure you have the QT development libraries installed and get the
source from SVN:

$ svn co https://aubit4gl.svn.sourceforge.net\
/svnroot/aubit4gl/trunk/remote_ui remote_ui
$ cd remote_ui/QT
$ qmake
$ make

16.4.1.2 Binary

Don’t do it!

16.4.2 Windows

16.4.2.1 Source

You will need QT installed - make sure QT downloads the Mingw compiler
also if you do not have that already installed.

Start a DOS command window from the QT command prompt (Start->All
Programs->QT open source->QT command prompt)

Obtain the current code from the svn repository :

svn co https://aubit4gl.svn.sourceforge.net/\
svnroot/aubit4gl/trunk/remote_ui/QT QT

234

CHAPTER 16. NEW DISPLAY CLIENTS 16.5. PROXY

or grab the latest client tarball.
cd to the top of the tree (should contain the client.pro file) and execute
qmake. This is a program provided by the QT development tools which
creates a makefile.
After qmake finishes - execute make, and you should end up with client.exe

16.4.2.2 Binary

The current binary should be available from the front page at aubit.com.
Install this to c:\aubit. DBPATH should be set to include c:\aubit so
that the Client can pick up any image files it needs.
These images should be in c:\aubit\pics or c:\aubit\images (or you
add further directories to DBPATH for your own images).

16.5 Proxy

The proxy is an application server program which listens for connection re-
quests from the Client, starts the required 4gl program, and then maintains
communications back to the front end client.
The proxy allows the use of a Client behind firewalls and on Dynamic IP
addresses.
In order to use the proxy - you need to set up 2 environment variables :

PIPEDIR This points to a directory where the proxy will store some tem-
porary named pipe files.

BASEPROGRAMS This points to a directory where the 4gl applica-
tions exist. This is used to ensure that users cannot execute arbitrary
programs - and can only use those which you specify..

When a Client connects to the proxy – there is a brief handshake – which
involves :

PROTOCOL? → UIVERSION 1.0
PROGRAMNAME? → <program to execute>
USER? → <username>
PASSWORD? → <password>

235

16.6. FORM LAYOUTS CHAPTER 16. NEW DISPLAY CLIENTS

16.5.0.3 Authentication

The username/password combination must exist in the password file. The
password file ($A4GL_PROXYPASSWD) is read and must contain user-
name:password combinations.

The passwords will be encrypted with a simple password encryption mech-
anism – so passwords are not stored in a very secure way, but can at least
not be read in plain text. Encrypted passwords begin with an ’!’, this means
that a normal password cannot begin with a ’!’.

Note: All processes run as the same user as the Proxy. The username which
was passed in will be set as the environment variable PROXYUSER

The proxy program is called proxy. If it is not in your PATH, you may have
to compile it from the source tar ball. Look for it in the subdirectory:
lib/libui/ui_xml

16.6 Form Layouts

16.6.1 SCREEN

The new GUI interfaces accept the normal TUI form layout and render the
form elements using graphical widgets.

16.6.2 LAYOUT

To exploit the graphical capabilities of the new GUI front ends, replace the
SCREEN keyword with LAYOUT GRID or LAYOUT TABLE.

GRID and TABLE have the same syntax as the TUI .per files in that you
draw the screen within curly braces, and you provide tags within field de-
limiters which will link user input to program variables. The TABLE layout
is intended for screen arrays. (You still have to declare the screen array in
the INSTRUCTIONS section of the .per file.)

In addition to the mandatory GRID or TABLE container, you can exploit
other containers:

236

CHAPTER 16. NEW DISPLAY CLIENTS 16.6. FORM LAYOUTS

• HBOX (pack horizontally)

• VBOX (pack vertically)

• GROUP (?)

• FOLDER (array of PAGEs tabbed)

• PAGE (a PAGE contained in a FOLDER)

These containers can be nested to influence the position of the graphical
elements in the display.

16.6.2.1 GRID

To emulate the traditional SCREEN section, do something like this:

LAYOUT
GRID
{ Label1 [f001]

Label2 [f002]
....

}
END

16.6.2.2 TABLE

To display the traditional SCREEN ARRAY, do something like this:

LAYOUT
TABLE
{

Column1 Column2
[f001] [f002]
[f001] [f002]
....

}
END

237

16.6. FORM LAYOUTS CHAPTER 16. NEW DISPLAY CLIENTS

16.6.2.3 HBOX, VBOX

These containers respectively pack their contents horizontally and vertically.
For example:

LAYOUT
VBOX Sales
GRID Order (BORDER)
{

[o001]
....

}
TABLE Items (BORDER)
{
[i001] [i002] ... [i00n]
[i001] [i002] ... [i00n]
....
}
END
END

Will lay out the GRID above the TABLE. HBOX would lay out the TABLE
alongside the GRID.

The contents of HBOX and VBOX can be any number of layout containers
which in their turn contain containers in nested fashion.

16.6.2.4 FOLDER

The Folder container is special and can only contain 1 or more PAGEs. e.g.

LAYOUT
FOLDER
PAGE P1 END
PAGE P2 END
...

END
END

238

CHAPTER 16. NEW DISPLAY CLIENTS 16.6. FORM LAYOUTS

The PAGEs are expected to contain GRID or TABLE containers with the
usual tag assignments.

An reasonably full example:

database formonly
LAYOUT
FOLDER
PAGE Class
GRID
{
[f1]
}
END
END
PAGE Codes
TABLE
{

[f001] [f002]
[f001] [f002]
[f001] [f002]
[f001] [f002]
[f001] [f002]
[f001] [f002]
[f001] [f002]

}
END
END
end
tables
formonly
attributes
TEXTEDIT f1 = formonly.class;
EDIT f001 = formonly.code;
EDIT f002 = formonly.descr;
INSTRUCTIONS
SCREEN RECORD s_codes[7](code, descr);

end

239

16.6. FORM LAYOUTS CHAPTER 16. NEW DISPLAY CLIENTS

16.6.2.5 Container Syntax

The containers above all have the syntax:

type id (attributes) container END

The ID is optional and is a non-quoted string e.g. Sales

The Attributes are a optional parenthesised list (comma or space separated)
consisting of any or all of the following:

STYLE=”somestyle”
HIDDEN
AUTOSIZE
TEXT=”some text”
ACTION=string
BORDER

e.g.

(AUTOSIZE BORDER)

16.6.3 Field Widgets

The graphical elements that you can put into the GRID or TABLE are the
following:

• EDIT (Normal One Line Edit Field) This is the default.

• BUTTON

• BUTTONEDIT (Edit with a Button (with Icon) on the right side)

• COMBOBOX (Dropdown LineEdit)

• CHECKBOX

• DATEEDIT (ButtonEdit with a CalendarWidget when button is clicked)

240

CHAPTER 16. NEW DISPLAY CLIENTS 16.6. FORM LAYOUTS

• IMAGE

• LABEL

• PROGRESSBAR

• TEXTEDIT (Multiline TextField)

• WEBVIEW (Browser Widget)

16.6.3.1 Widget Syntax

To assign a widget type to a field in the .per file, precede the usual entry in
the ATTRIBUTES section with a widget type. e.g.

f001=formonly.startdate, type=date;

could become

DATEEDIT f001=formonly.startdate, type=date;

The default type of widget is EDIT.

Each widget can have a TITLE attribute:

EDIT f003=formonly.firstname, TITLE=”First Name”;

The front end program will position the title appropriately according to
its layout policy and you should not include the title in your layout of the
GRID or TABLE section of the .per file.

To supply the options for a COMBOBOX, use the ITEMS attribute.

COMBOBOX f005=formonly.title,
ITEMS=(“Mr”, “Mrs”, “Ms”, “Dr”, “Sir”, “Lady”);

241

16.7. SETTINGS/ENVIRONMENT VARIABLESCHAPTER 16. NEW DISPLAY CLIENTS

16.7 Settings/Environment Variables

The client executes in a Client/Server mode with the 4gl application. This
separation is achieved using a TCP/IP connection.
When using the proxy, all the required settings are made by the proxy
program.
If you want to start the 4gl application and have the client operate in Listen
mode then you need to set these settings manually.
In order for a 4GL application to talk to the client, you need to tell Au-
bit4GL where the client is that it needs to connect to, by using the Clients
IP address.
Setting A4GL_UI=XML makes Aubit4GL use the XML protocol required
for communicating with the Client program.
You therefore need to set :

$ export AFGLSERVER=ip.addr.of.client

(You may also need to set A4GLPORT - although this default to the same
values within the Client and the XML UI module.)

$ export A4GL_UI=XML

16.7.1 Debugging

If you export LOGPROXY=Y, Aubit4GL will write to the following files:

• logproxy.out

• logproxy.in

• proxy.log

You can set the level of verbosity to a value between 1 and 9 with:

export PROXYDBGLVL=Y

These files are all valuable in debugging the behaviour of the Aubit4GL
proxy server and its communication between the back end front end.

242

CHAPTER 16. NEW DISPLAY CLIENTS16.8. SPECIAL FUNCTIONS

16.8 Special functions

The following functions are useful in communicating with the new GUI
display clients:

aclfgl_client_ui_call
opendir
openfile
savefile
aclfgl_add_to_toolbar
aclfgl_set_window_title
aclfgl_set_application_xml
aclfgl_dump_screen
aclfgl_set_display_field_delimiters

Other example calls:

DEFINE akt_window ui.Window
LET akt_window = ui.Window.getCurrent()
DEFINE akt_form ui.Form
LET akt_form = ui.Form.getForm()
CALL akt_form.setFieldHidden("fieldname", bool hidden)
CALL akt_form.setElementHidden("elementname", bool hidden)
CALL ui.interface.refresh()

fgl_drawbox() Has no effect in this UI

aclfgl_send_to_ui() Not normally required - used internally for sending
Client UI specific commands

aclfgl_client_set() Makes settings within the ClientUI. Settings will be
dependant on which UI is being used.

16.9 Ventas GUI Client

Check the Ventas website for definitive documentation when it becomes
available.

243

16.10. LOOK & FEEL CHAPTER 16. NEW DISPLAY CLIENTS

16.9.1 Startup

Assuming that you have cded to the directory where you have downloaded
the Ventas client, you can start the Ventas Display Client (VDC) with either
of the following commands:

./Client -l

./Client <shortcut name>

16.10 Look & Feel

You can modify the default controls, styles, menus, and toolbars by con-
structing appropriate XML files and transmitting them to the display client
using sendfile_to_ui().

VDC expects these files to have the suffixes:

• .4st for style files

• .4sm for start menus

• .4tb for toolbars

• .4ad for actions

There are some examples below to help you.

16.10.1 Toolbars

The Toolbar is is sent via a XML-File (extension .4tb) to the Client by the
sendfile_to_ui command()
Its structure is:

<ToolBar buttonTextHidden="0/1" iconHidden="0/1"
hidden="0/1" buttonTextPosition="beside/under">

<ToolBarItem name="actionname" image="image.ext"
text="Text" comment="Tooltip" />

<ToolBarSeparator/>
</ToolBar>

244

CHAPTER 16. NEW DISPLAY CLIENTS 16.10. LOOK & FEEL

16.10.2 Images

Images have to reside inside a subdirectory pics or images or must be in
the DBPATH/pics or DBPATH/images

16.10.3 Application Launcher

The StartMenu is is sent via a XML-File (extension .4sm) to the Client by
the sendfile_to_ui command
Its structure is:

<StartMenu text ="RootElementText">
<StartMenu text ="RootElementText">
<StartMenuGroup text ="RootNodeText">
<StartMenuCommand text ="ChildNodeText"

exec ="Command to Execute" />
</StartMenuGroup>
</StartMenu>

You can define different Menustyles for the Menu, at the moment there is
a "tree-menu" or a menubar.
The Style can be defined with the Style attribute in 4gl or within the styles
xml file with the startMenuPosition parameter

16.10.3.1 STYLES

Styles are sent via a XML-File (extension .4st) to the Client by the send-
file_to_ui command
Its structure is:

<StyleList>
<Style name="sytlename" >
<StyleAttribute name="attributename"

value="attributevalue" />
</Style>
</StyleList>

245

16.10. LOOK & FEEL CHAPTER 16. NEW DISPLAY CLIENTS

The Stylename can be one of the following:

• * (matches everything)

• a style name (should be referenced as style attribute in 4gl)

• an elementtype (e.g. ButtonEdit)

• stylename.elementtype

• (stylename.)elementtype:modifier (e.g. ButtonEdit:focus)

The Stylelist can contain many different styles.

Colour values can be defined in CSS or RGB values

16.10.3.2 Attributes

Attribute Value Description
startMenuPosition menu | tree Display startmenu as

Tree or Filemenu
ringMenuPosition none | top | bottom |

left | right
Position of the
Ringmenu

actionPanelPosition none | top | bottom |
left | right

Position of the
actionpanel

toolBarPosition none | top | bottom |
left | right

Position of the toolbar

color RGB or CSS Value Color of text
background-color RGB or CSS Value Backround

color
hideButtons yes | no Hide Option hides or

just disable
menubuttons

windowType normal | modal Sets the windowtype
to normal or modal

246

CHAPTER 16. NEW DISPLAY CLIENTS 16.10. LOOK & FEEL

16.10.3.3 Modifiers

Modifier Description
:active This state is set when the widget is in an active window
:enabled This state is set when the widget is enabled
:disabled This state is set when the widget is disabled
:focus The item has input focus
:hover the mouse is hovering over the item
:read-only The item is read-only

16.10.3.4 Actions

Actions are sent via an XML File (extension .4ad) to the Client by the
sendfile_to_ui command

<ActionDefaultList>
<ActionDefault name="actionname" attribute="attributevalue" />
</ActionDefaultList>

With the Actions file you can define default attributes for interactive Actions
like Menubuttons or ON KEY or ON ACTION events or the Toolbar.

You can define more than one attribute for an Action but the name attribute
is mandatory.

247

16.11. OTHER GUI CLIENTSCHAPTER 16. NEW DISPLAY CLIENTS

16.10.3.5 Attributes

Attribute Value Description
name String defines the actions name
text String if a button is displayed this is

the buttons text
comment String this defines the tooltip
image String name of the image that is to

be shown
defaultView yes/no/auto show button in the action

panel or not
acceleratorName String 1st shortcut name
acceleratorName2 String 2nd shortcut name
acceleratorName3 String 3rd shortcut name
acceleratorName4 String 4th shortcut name
acceleratorName5 String 5th shortcut name

The Acceleratornames can be

• a-z

• 0-9

• F1-F35

• Control-Shift

16.10.4 SSH client mode

Details to be supplied

16.11 Other GUI clients

Other specialised GUI client will be developed – UI’s written in C# and
Java are in development – please contact mike.aubury@aubit.com for further
details.

248

CHAPTER 16. NEW DISPLAY CLIENTS 16.12. PROTOCOL

16.12 Protocol

The New Graphical UIs are based on an XML protocol. The protocol is
optimised so that it should run well even on high latency lines because data
is only sent when required.

This does mean that there is very limited error checking (eg. for displaying
to fields which dont exist on the form etc.) as many DISPLAY statements
may be sent in a single envelope, which may well be sent some significant
time after the DISPLAY command is executed.

Normally - this output is flushed when user input is required (eg - when
doing a MENU or INPUT), or when an internal buffer becomes full.

If you are doing some processing which does not require user input - but
does require the output to be displayed quickly then you can flush this
internal buffer using aclfgl_flush_ui. e.g.

CALL aclfgl_flush_ui()

The protocol is open – in so far as the on the wire protocol is well defined
and it should be easy to add your own custom front ends. You will just need
to react to the datapackets defining the current UI statements and return
the appropriate TRIGGERED package.

(See below for the DTD for the XML protocols used in both directions.
XSD definitions are available from the aubit.com website)

16.12.1 Testing

The communications are normally conducted on STDIN/STDOUT – so you
can try the protocol just by starting the program from the command line
with the correct environment variables set :

E.g. For a simple ’hello world’ program :

main
display "Hello World"

end main

249

16.12. PROTOCOL CHAPTER 16. NEW DISPLAY CLIENTS

$ export A4GL_UI=XML

$ unset AFGLSERVER

$./myprog

<ENVELOPE ID="1">
<COMMANDS>
<PROGRAMSTARTUP PROGRAMNAME="./x1" ID="0">
<ENV NAME="DBPATH"
VALUE=":/home/aubit4gl/aubit4glsrc/tools/”>

<ENV NAME="DBDATE" VALUE="dmy4/"/>
</PROGRAMSTARTUP>
</COMMANDS>
</ENVELOPE>
<ENVELOPE ID="1">
<COMMANDS>
<DISPLAY>Hello World</DISPLAY>
<PROGRAMSTOP EXITCODE="0" ID="0">
</PROGRAMSTOP>
</COMMANDS>
</ENVELOPE>

Here is another example – this one uses a PROMPT to get some input from
a user (reply from the client is in indentded and in bold):

<ENVELOPE ID="3">
<COMMANDS>
<PROGRAMSTARTUP PROGRAMNAME="./x1" ID="3">
<ENV NAME="DBPATH"
VALUE=":/home/aubit4gl/aubit4glsrc/tools"/>

<ENV NAME="DBDATE" VALUE="dmy4/"/>
</PROGRAMSTARTUP>
</COMMANDS>
</ENVELOPE>
<ENVELOPE ID="3">
<COMMANDS>
<PROMPT CONTEXT="0" PROMPTATTRIBUTE="-1" FIELDATTRIBUTE="-1"
TEXT="Please enter your name" CHARMODE="0" HELPNO="0"

250

CHAPTER 16. NEW DISPLAY CLIENTS 16.12. PROTOCOL

ATTRIB_STYLE="" ATTRIB_TEXT="">
<EVENTS>
</EVENTS>
</PROMPT>
<WAITFOREVENT CONTEXT="0" />
</COMMANDS>
</ENVELOPE>
<TRIGGERED ID="ACCEPT" LASTKEY="ACCEPT">
<SYNCVALUES><SYNCVALUE>Mike Aubury</SYNCVALUE></SYNCVALUES>
</TRIGGERED>
<ENVELOPE ID="3">
<COMMANDS>
<FREE TYPE="PROMPT" CONTEXT="0"/>
<DISPLAY>Mike Aubury </DISPLAY>
<PROGRAMSTOP EXITCODE="0" ID="3">
</PROGRAMSTOP>
</COMMANDS>
</ENVELOPE>

The front end simply replies with the TRIGGERED packet to send data
back to the 4GL program.

All interactions are handled within a UI Context. Each UI statement which
requires user input establishes a Context which is used by a subsequent
WAITFOREVENT. When that Context is no longer required – the context
is FREEd.

16.12.2 DTDs

For those developing other front ends for Aubit4GL there are DTDs and
the equivalent XSD files available in a separate document and on the Aubit
website. These define the formats for the packets which go from Client to
Program, Program to Client, and the XML version of .per forms.

The XML DTDs and XSDs are too voluminous to include in this manual.

251

16.12. PROTOCOL CHAPTER 16. NEW DISPLAY CLIENTS

252

Chapter 17

PDF Reports

17.1 Before you start

Aubit 4GL uses PDFLib to help generate the PDF output, you’ll need a
copy of this. NOTE : You must use a recent release of PDFLIB (available
from http://www.pdflib.com).

17.2 Introduction

PDF report syntax is very similar to normal 4GL reports, but with added
functionality. PDF reports are usually started with the

START REPORT repname TO "somefile.pdf"

This is because PDFs are read using Acrobat or some other pdf reader that
requires a file.
To define a report as being a PDF report, you must use

PDFREPORT report_name(...)

instead of

REPORT report_name(...)

253

17.3. OUTPUT SECTION CHAPTER 17. PDF REPORTS

17.3 Output Section

The output section of a 4GL PDF report is slightly different from a normal
report. It can have any of the following

LEFT MARGIN nval
RIGHT MARGIN nval
TOP MARGIN nval
BOTTOM MARGIN nval
PAGE LENGTH nval
PAGE WIDTH nval
FONT NAME "font"
FONT SIZE integer
PAPER SIZE IS A4
PAPER SIZE IS LETTER
PAPER SIZE IS LEGAL
REPORT TO "filename.pdf"
REPORT TO PIPE "progname"

nval can be any of the following :

n POINTS - PDF points 1/72 of an inch
n INCHES - Inches
n MM - metric mm
n

eg.

LEFT MARGIN 0.25 INCHES
RIGHT MARGIN 20 MM
PAGE LENGTH 60
COLUMN 10

When the units expression is omitted, n defaults to characters or lines
(whichever is appropriate).

254

CHAPTER 17. PDF REPORTS 17.3. OUTPUT SECTION

17.3.1 Fonts

The 4GL program will use the PDFLIB fonts. If the required fonts do not
exist then the program will abort with a PDFLIB error.

NOTE : Case is sensitive for these font names!

Eg.

FONT NAME "Times-Roman"

or

FONT NAME "Helvetica"

17.3.2 Report Structure

The report structure will be identical to that of a normal 4GL report.

In addition to the normal 4GL report statements, you can use the following
Aubit4GL PDFREPORT extensions:

SET BARCODE TYPE expr
PRINT BARCODE [NO TEXT] [AT x, y] [WIDTH w HEIGHT h]
FILL
FILL STROKE
LINE TO [TOP] y, x
MOVE TO [TOP] y, x
SET COLOR r, g, b #all 0-1
SET FILL COLOR r, g, b
SET FONT NAME name
SET FONT SIZE n
SET PARAMETER name, value
SET STROKE COLOR r, g, b
STROKE

BARCODE expr can be one of 2, 5, 8, 13, 25, 39, 128A, 128B, 128C, or QR
(all quoted)

255

17.3. OUTPUT SECTION CHAPTER 17. PDF REPORTS

17.3.3 Extras

In order to generate nice reports, there are a couple of extra features avail-
able.

17.3.3.1 Positioning

You can use the normal column and skip positioning mechanisms. You can
use the nval values for column
eg

PRINT COLUMN 1.1 inches,"Hello World"

but you have to use SKIP BY for nval movements :
Eg.

SKIP BY 2 inches

Also you now have a ’skip to’ which allows you to move to an absolute
position within the current page (including backwards).
Eg.

SKIP TO 2 inches

17.3.3.2 Images

It is also possible to include an image within the PDF report, this is done
in either of 2 ways:

• using the PRINT IMAGE statement with a blob variable containing
an image. The image must be a GIF, PNG, TIFF or JPEG and this
type must be specified when displaying the image, this is done using
the AS ... keyword, ie "AS GIF", "AS TIFF", "AS PNG", "AS JPEG".

• using the PRINT IMAGE statement with a filename. Supply the
absolute path to the file.

256

CHAPTER 17. PDF REPORTS 17.4. BARCODES

The image can be scaled when it is displayed. This can be either a single
value (ie scaling x & y by the same value) or two (specifying the scaling for
x & y separately)

print image some_blob_var as png
print image some_blob_var as gif scaled by 0.5.7,0.8
print image ”/local/images/oglion.png” as png

17.3.4 Example program

Please see pdf_report.4gl in test/

17.4 Barcodes

The following description has been supplied by Michael Krauss (mike@holzamer.de):

The supported barcodes in PDFREPORT are:

• ean-8 An EAN-8 is a barcode and is derived from the longer European
Article Number (EAN-13) code. It was introduced for use on small
packages where an EAN-13 barcode would be too large; for example
on cigarettes

• ean-13 or UPC-A is an EAN-13 barcode (originally "European Art-
icle Number", but now renamed ”International Article Number” even
though the abbreviation has been retained) is a 13 digit (12 + check di-
git) barcoding standard which is a superset of the original 12-digit Uni-
versal Product Code (UPC) system developed in the United States.[1]
The EAN-13 barcode is defined by the standards organisation GS1.

– addon ean-2 is a supplement to the EAN-13 and UPC-A bar-
codes. It is often used on magazines and periodicals to indicate
an issue number.

– addon ean-5 is a supplement to the EAN-13 and UPC-A barcode
used on books. It is used to give a suggestion for the price of the
book.

257

17.4. BARCODES CHAPTER 17. PDF REPORTS

• barcode 39 (also known as "USS Code 39", "Code 3/9", "Code 3 of
9", "USD-3", "Alpha39", "Type 39") is a barcode symbology that can
encode uppercase letters (A through Z), digits (0 through 9) and a
handful of special characters like the $ sign.

• barcode 25 or barcode image *, code 25 *, standard 2of5 *, industrial
2of5, space code25, barcode space, bar code symbology, also known as
standard 2 of 5, or industrial 2 of 5, is designed to encode numeric-only
data.

• barcode QR is a matrix barcode (or two-dimensional code), readable
by QR scanners, mobiles phones with camera, and smartphones.

The PDFREPORT statement to set the barcode type is:

SET BARCODE TYPE expr

where expr is one of:

”2”, ”5”, ”8”, ”13”, ”25”, ”39”, ”QR”
”128A”, ”128B”, or ”128C”

but the system is tolerant of variations such as:

”ean8”, ”ean-8”, ”ean13”, ”ean-13”

or upper case variants of these.

The following demonstrates how how to create barcodes of types: 2, 5, and
8

PDFREPORT
#
Example for barcode ean-13
with addon ean-2 and ean-5
and use of ean-8
#
Contributed by Michael Krauss

258

CHAPTER 17. PDF REPORTS 17.4. BARCODES

mike@holzamer.de
DEFINE i INTEGER
MAIN

START REPORT pgtrex to "example.pdf"
FOR i = 1 TO 20

OUTPUT TO REPORT pgtrex(i)
END FOR

FINISH REPORT PGTREX
RUN "acroread ./example.pdf"

END MAIN
PDFREPORT pgtrex(r)

DEFINE r INTEGER
OUTPUT

TOP MARGIN 0 INCHES
LEFT MARGIN 0.5 INCHES
RIGHT MARGIN 0.1 INCHES
BOTTOM MARGIN 0.2 INCHES
PAPER SIZE IS a4

FORMAT
PAGE HEADER

SET TEXT FORMAT "utf8"
SET FONT NAME "Times-Roman"
SET FONT SIZE 8
SET BARCODE TYPE "13"
SKIP TO 25 mm
PRINT COLUMN 0.5 INCHES;
PRINT BARCODE "4023500760409"

WIDTH 1.8 INCHES HEIGHT 0.8 INCHES
SET BARCODE TYPE "5"
SKIP TO 25 mm
PRINT COLUMN 2.4 INCHES;
PRINT BARCODE "08000"

WIDTH 0.6 INCHES HEIGHT 0.7 INCHES
SKIP TO 60 mm
PRINT "The barcode type ’13’ is one carton of Marlboro",

" with 10 packages ",
"and the price (barcode type ’5’) of €80.00."

SKIP 1 LINE
PRINT "Example of Tabacco-Branch:"

259

17.4. BARCODES CHAPTER 17. PDF REPORTS

PRINT "digit 1 to 3: ’402’ is the branch number."
PRINT "digit 4 to 7: ’3500’ is the company number."
PRINT "digit 8 to 12: ’76040’ is the article number."
PRINT "digit 13; checksum"
PRINT "But the use of digits and their definition ",

"is from branch to branch and country different."
SET BARCODE TYPE "8"
SKIP TO 95 mm
PRINT COLUMN 0.5 inches;
PRINT BARCODE "40235462"

WIDTH 1.2 inches HEIGHT 0.7 inches
SKIP TO 125 mm
PRINT "The barcode type ’8’ is one package of Marlboro."
SKIP 1 LINE
PRINT "Example:"
PRINT "digit 1 to 4: ’4023’ is the company number."
PRINT "digit 5 to 7: ’546’ is the article number."
PRINT "digit 8: checksum"
SET BARCODE TYPE "13"
SKIP TO 150 mm
PRINT COLUMN 0.5 inches;
PRINT BARCODE "4196176209951"

WIDTH 1.8 inches HEIGHT 0.8 inches
SET BARCODE TYPE "2"
SKIP TO 150 mm
PRINT COLUMN 2.4 inches;
PRINT BARCODE "52"

WIDTH 0.2 inches HEIGHT 0.7 inches
SKIP TO 190 mm
PRINT "This example of ean-13 is a Magazine. "

"The ean-2 is the issue, week number 52 of year."

END REPORT

17.4.1 Barcodes 128

The new barcode 128 has variants: EAN-128A,B,C + GS-128

This barcode has 3 different code sets:

260

CHAPTER 17. PDF REPORTS 17.4. BARCODES

Code Set A which includes all of the standard upper case alphanumeric
characters and punctuation characters together with the symbology
elements (e.g. characters with ASCII values form 00 to 95) and seven
spectial characters.

Code Set B which includes all of the standard upper case alphanumeric
characters (e.g., ASCII characters 32 to 127 inclusive and seven special
characters.

Code Set C which includes the set of 100 digit pairs from 00 to 99 inclus-
ive, as well as three special characters. This allow numeric data to be
encoded as two data digits per symbol character.

17.4.1.1 Tilde Method

The special characters and the Application Identifer (AI) encode with the
Tilde Method. When using this method, the parentheses are not included
in the data encoded; instead the tilde character plus 3 digits are used to
represent the AI. Use the following extended ASCII character:

~212 2 digit AI

~213 3 digit AI

~214 4 digit AI

~215 5 digit AI

~200 DEL

~201 FNC3

~202 FNC2

~203 SHIFT

~204 CODE C

~205 CODE B

~206 CODE A

~207 FNC1

261

17.4. BARCODES CHAPTER 17. PDF REPORTS

17.4.1.2 Type 128B

GS1-128: to encode (8100)712345(21)12345678 with the Tilde

Method

set barcode type "128B"
skip to 25 mm
print column 0.5 inches;
print barcode "~2148100712345~2122112345678"

But 48 character is maximal length to encode (GS1-128).

#
#
Example for barcode ean-128 A,B,C + GS1-128 in pdfreport
Michael Krauss
mike@holzamer.de
#
DEFINE i INTEGER
MAIN

CALL startlog("errorlog")
START REPORT pgtrex TO "example.pdf"

#select * \d
FOR i = 1 TO 1
OUTPUT TO REPORT pgtrex(i)

END FOR
FINISH REPORT pgtrex
RUN "acroread ./example.pdf"

END MAIN
PDFREPORT pgtrex(r)

DEFINE r INTEGER
OUTPUT

TOP MARGIN 0 inches
LEFT MARGIN 0.5 inches
RIGHT MARGIN 0.1 inches
BOTTOM MARGIN 0.2 inches
PAPER SIZE IS a4

FORMAT

262

CHAPTER 17. PDF REPORTS 17.5. PRINTING

PAGE HEADER
SET TEXT FORMAT "utf8"
SET FONT NAME "Times-Roman"
SET FONT SIZE 8

#Example for 128-A
SET BARCODE TYPE "128A"
SKIP TO 25 mm
PRINT COLUMN 0.5 inches;
PRINT BARCODE "CODE-128A"

WIDTH 3 inches HEIGHT 0.8 inches
#Example for 128-B

SET BARCODE TYPE "128B"
SKIP TO 60 mm
PRINT COLUMN 0.5 inches;
PRINT BARCODE "CODE-128b"

WIDTH 3 inches HIGHT 0.8 inches
#Example for 128-C

SET BARCODe TYPE "128C"
SKIP TO 90 mm
PRINT COLUMN 0.5 inches;
PRINT BARCODE "01234567890122"

WIDTH 3 inches HEIGHT 0.8 inches
Example for GS1-128;
We use here 128B with "~204" is change to code 128C

SET BARCODE TYPE "128B"
SKIP TO 130 mm
PRINT COLUMN 0.5 inches;
PRINT BARCODE "~204~2120195012345678903~2143102000400"

WIDTH 6 inches HEIGHT 0.8 inches
END REPORT

17.5 Printing

PDFREPORTs produce PDF files. REPORTs produce textfiles (ASCII,
ISO8859 or other encodings depending on $LANG). They may need different
treatment when you print them.

263

17.5. PRINTING CHAPTER 17. PDF REPORTS

17.5.1 PDF

Linux distributions and Mac OSX can print PDF or Postscript files direct
to the printer using CUPS (Common Unix Printing System). Even when
the target printer does not support PDF or Postscript directly, CUPS will
intervene and translate the PPD properties into the printer control language
the printer uses. So, when using PDF reports in Aubit4GL applications,
output to a filename with a .pdf extension. Then you can view it with the
likes of acroread, kpdf, or whichever and from there use CTRL-P to invoke
the printer interface. Alternatively from the command line:

lp -d laser rep.pdf

If you need to manipulate the PDF files (e.g. to rotate them on printers
which cannot do landscape), you may need to install the pdfjam package
and use its commands. e.g. :

pdf90 rep.pdf | lp

17.5.2 ASCII, ISO8895, etc

Traditional reports of ASCII characters are a different matter and may need
a bit more intervention from you as an administrator or user. If your printer
is not a traditional dot-matrix printer with monospaced characters and fixed
width characters, you may need to read on ...

17.5.3 CUPS

You can manage print queues on Linux/Unix and Mac OSX systems using
CUPS (Common Unix Printing System) which supports both the traditional
lp (Bell Labs System V) and lpr/lpd (BSD Berkeley Software Distribution)
systems. This means that you can use familiar command line tools like
lpstat, lpctl, lpadmin, etc as well as the new CUPS lpinfo, lpoptions,
lphelp, etc. Use info or man to find out more.

CUPS is built around 2 protocols: IPP and PPD.

264

CHAPTER 17. PDF REPORTS 17.5. PRINTING

• IPP is the Internet Printing Protocol designed to allow network brows-
ing and control of printers, queues, and jobs.

• PPD is the Postscript Printer Description. All printers have a .ppd file
which lists their capabilities in terms of Postscript values. Unix/Linux
has the concept that all files to be printed are passed to ghostscript
for interpretation using the ppd file then are filtered by a program
appropriate for the printer which will translate the postscript language
into the printer’s native language (e.g. PCL for HP printers). This
eliminates the concept of a driver program for each printer.

The pièce de résistance of CUPS is its web interface for managing print-
ers (whether local or remote). Point a browser to localhost:631 or to
<printserver>:631 and you will be able to configure any and all aspects
of printer maintenance and job control.
You will need to have been added to the CUPS list of trusted users via
the command: lppasswd -a <username> by a user with root privileges.
The password supplied to CUPS need not be the same as your normal login
password.
If you have a graphical user interface, use your normal browser (e.g. firefox,
konqueror, or safari,). If your access is restricted to a text interface use the
text browser: lynx
lynx localhost:631

17.5.3.1 Print Queue Set Up

Unlike most present day applications, traditional 4GL applications produce
report files of ASCII text.
The reports produced by 4GL applications are likely to come in two formats:

• 66 lines per page with 80 chars per line in portrait orientation

• 43 lines per page with 120 chars per line in landscape orientation

The above formats fitted the traditional dot-matrix printers of the 1980s
which used fixed pitch character sets on continuous fan-fold paper.
Modern printers generally use scalable vector fonts with proportional char-
acter sizes on cut sheets of paper (usually A4).

265

17.5. PRINTING CHAPTER 17. PDF REPORTS

If report files produced by Aubit4GL reports don’t fit the printed pages
(e.g. the pages creep and/or lines wrap) then you may have to configure a
print queue by setting its cpi and/or lpi appropriately so that the 2 report
formats print pages correctly on each sheet without line creep or extra blank
pages at end of file.

17.5.3.2 cpi and lpi

Set cpi (characters per inch) to a value which will cause the printer to scale
the font characters to fit 80 or 120 characters to each line.
Set lpi (lines per inch) to a value which will cause the printer to scale the
font characters to fit 66 or 43 lines per page.
Printers vary considerably from model to model, and from make to make,
in the size of each one’s printable region on a sheet of A4.
A4 has dimensions: 210mm x 286mm (8.25in x 11.654in). Unfortunately
most printers cannot print right to the edges of the paper. Generally laser
printers can print closer to the edges than inkjet printers.
To determine the dimensions of the printable region, print a file on the
printer with the option: -o page-border=single . You will see a border
printed right on the border of the printable region of the A4 sheet. Measure
the width and height of the border rectangle (with an inch ruler if possible).
If you don’t have an inch ruler, divide the millimetre measurement by 25.4.
Once you know the dimensions of the printable region, calculate cpi by
dividing 80 (or 120) character count per line by the horizontal dimension:
e.g. 80 / 7.5 (which equals 10.67).
Similarly calculate lpi by dividing 66 (or 43) lines per page by the size (in
inches) of the vertical dimension.
Typical lpi values which have worked correctly on some HP printers are:

portrait: 66 lines in 10.625 inches: -o lpi=6.21

landscape: 43 lines in 7.5 inches: -o lpi=5.73

Note that cpi and lpi are floating point numbers and you can use 2 or more
decimal places.
An example lp command:

266

CHAPTER 17. PDF REPORTS 17.5. PRINTING

lp -s -d laser1 -o cpi=10.5 -o lpi=6.21

Note that each option needs its own -o prefix.

The -o options for the lp command come in two categories:

• standard options general to CUPS. Get a list of these from the com-
mand:
info lp
example options are: landscape, portrait, cpi=N, etc

• printer model specific options. Get a list of these from the command:
lpoptions -h printer -l
where printer is the hostname for the printer. The output from this
command is in the form:
OptionID/Label: Value1 Value2 ... Valuen
e.g.
TonerDensity/Toner Density: 1 2 *3 4 5
The * indicates the default value

17.5.3.3 CUPS Documentation

Point your browser (e.g. Firefox , Konqueror, Safari, or lynx) to:
http://localhost:631 for complete documentation of CUPS.

In the past the printers were set up by sending a stream of codes (in the
PCL language) to choose fonts, pitch size, etc., suitable for the output of
reports. With CUPS, this is now done by the system administrator who sets
up a unique queue for each configuration of a printer using the appropriate
-o options.

17.5.4 Print Queue Problems

If a print queue goes down (e.g. if it runs out of paper), you can check the
queue with the command:

lpstat -t

267

17.5. PRINTING CHAPTER 17. PDF REPORTS

This will show which queues are disabled, e.g.:

printer S2 id idle. disabled since Thu 28 Feb 2009 03:00:42 PM NZDT

and which jobs are are waiting in which queues, e.g.:

S2-10109 rkh1914 3072 Sat 28 Feb 2009 03:48:12 PM NZDT

S2-10111 ts10273 1024 Sat 28 Feb 2009 04:00:00 PM NZDT

After the cause of the problem has been resolved you can then enable a
queue with the command:

cupsenable <queuename>

which requires root authority. After that you can monitor the queue again
with:

lpstat -t

until all the jobs have disappeared from the queue (i.e. have been printed),
but note:

• typically the first job in the queue (the first one queued after the queue
went down) will not print and will stay in the queue

• If so you should reprint it yourself manually, so the users don’t miss
it (they may not know which ones are missing).

17.5.4.1 a2ps

As an alternative to setting up a CUPS queue with special characteritics,
you can use the utility a2ps for one-off formatting of printouts. You will
need to have installed the psutils package.

a2ps exploits the ability of printers to scale and rotate content to fit on a
page. It allows you to print 2up (or other nup), place headers and borders,
and so on. It can be useful for unusually wide report formats. An example
call will give you the idea:

268

CHAPTER 17. PDF REPORTS 17.5. PRINTING

a2ps -B \
--medium=A4 \
--columns=1 \
--rows=1 \
--lines-per-page=66 \
--chars-per-line=160 \
--font-size=6 \
$*

The above is a sample source for a script named wprint which (without the
font-size option) can be used to print wide 160 characters per line reports.

269

17.5. PRINTING CHAPTER 17. PDF REPORTS

270

Chapter 18

Logical Reports

Logical reports take the print statements in an unmodified REPORT and
log whats printed and the section in which its printed to a meta data file.

18.1 Invoking a logical report

The report function is unchanged - but the calling procedure is enhanced
to include:
START REPORT report-name TO CONVERTIBLE

as well as the familiar TO PIPE/TO FILE etc.
This creates the meta data file (in /tmp) which can be processed later.

18.1.1 FINISHing the report

The processing is done via the FINISH REPORT statement, CONVERT
REPORT statement or via an external program process_report.
The extended Aubit4GL FINISH REPORT statement now accepts the fol-
lowing syntax :
FINISH REPORT report-name CONVERTING TO "filename" AS "type" [USING
"layout"]

271

18.1. INVOKING A LOGICAL REPORTCHAPTER 18. LOGICAL REPORTS

(You can also use CONVERTING TO PRINTER, TO PIPE)
FINISH REPORT report-name CONVERTING TO EMAIL AS "type" [USING
"layout"]

FINISH REPORT report-name CONVERTING TO MANY

18.1.2 Converting to "filename"

"type" can be any one of the conversions available on the system.
These are in $AUBITDIR/lib called libLOGREPPROC_*.[so/dll]
On an average system you may have :

• libLOGREPPROC_CSV.so

• libLOGREPPROC_PDF.so

• libLOGREPPROC_TXT.so

This means you can process types of "CSV", "TXT" or "PDF" A special
name of "SAVE" can also be used which copied the data verbatim from the
meta data file into the filename specified. This file can then be used with
the layout editor and/or the process_report program.
If USING "layout" is omitted a default layout will be used.

18.1.3 Default layouts

For PDF and TXT it is safe to setup a default layout.
These can be put in the $AUBITDIR/etc directory and have a .lrf exten-
sion. The filename is made up of combinations of program/module/report
name and the width of the page (<=80 = narrow <=132 = normal >132
= wide). The search order is complex - but basically it depends on :

1. program_module_report_type.lrf

2. program_report_type.lrf

3. program_module_type.lrf

272

CHAPTER 18. LOGICAL REPORTS18.1. INVOKING A LOGICAL REPORT

4. module_report_type.lrf

5. report_type.lrf

6. module_type.lrf

7. program_type.lrf

If none of these is found - then it looks for :

1. default_type_narrow.lrf

2. default_type_normal.lrf

3. default_type_wide.lrf

depending on the width
Finally - it will use

1. default_type.lrf

(Where type is PDF, TXT, or CSV for example)
To create one of these defaults - use layout_engine (for PDF and TXT, you
can edit using any meta data file as an input)

18.1.4 Converting to many

This allows multiple conversions. The meta data file is not automatically
deleted so it is possible to use the same meta data to generate a text file,
CSV output and PDF if required.
To do this you need to use the CONVERT statement

CONVERT REPORT rep-name TO "filename" AS "type" USING "layout"

again - USING "layout" is omitted, one will be generated automatically..
Once you’ve done all your conversions, free report will delete the meta data.
Examples :

273

18.2. SAVED META DATA CHAPTER 18. LOGICAL REPORTS

START REPORT r1 TO CONVERTIBLE
OUTPUT TO REPORT r1 (1,2)
FINISH REPORT r1 CONVERTING TO "myfile1.pdf"

AS "PDF" USING "layout1"
START REPORT r1 TO CONVERTIBLE
OUTPUT TO REPORT r1 (1,2)
FINISH REPORT r1 CONVERTING TO "myfile2.pdf" AS "PDF" # uses default layout
START REPORT r1 TO CONVERTIBLE
OUTPUT TO REPORT r1 (1,2)
FINISH REPORT r1 CONVERTING TO MANY
CONVERT REPORT r1 TO "orig.output" AS "SAVE"
CONVERT REPORT r1 TO "myfile3.pdf" AS "PDF"
CONVERT REPORT r1 TO "myfile4.txt" AS "TXT"
FREE REPORT r1

18.2 Saved Meta Data

There are 3 things you can use with the meta data

18.2.1 The Report Viewer

This is a GTK2.0 application which displays the contents of the report in
a tab’d window (one tab per page) - you can’t print or anything, but its
useful to see what has been put out in the meta data file and is used as the
basis of the next app.

By default, it will only show you the first 10 and last 10 pages (if your report
is only 5 pages long - you’ll still only see 5 pages!). This is basically to limit
the impact of a very large report in terms of creating GTK widgets!

You can change this by changing the MAX_PAGE and MIN_PAGE in
report_viewer/report_viewer.

Invoke using :

$ report_viewer filename

Where filename is the meta data file (ie the START REPORT TO "file-
name")

274

CHAPTER 18. LOGICAL REPORTS 18.2. SAVED META DATA

You will probably note that you can click on sections of the report and they
change colour. These define the printed elements. When you click on an
element everything that the report considers to be printed in the same place
in your 4GL (not based on lines/columns etc) is highlighted..
Also - there is a series of ’>’ going down the left hand side - these indicate
the block in which those elements are printed. Again clicking on one of these
highlights all lines printed within that block (I have not done anything about
have a print; in an AFTER then have a print in an ON EVERY ROW etc)
There is some debugging stuff which is printed to stdout (ie from the window
you ran the application from) which will eventually be removed.

18.2.2 The layout editor

This is another GTK2 application which embeds the report viewer and
allows you to edit a logical report output.
For now there are only two coded report output types: CSV and TXT
Although all of the code has been abstracted into shared libraries : libLO-
GREP_???.so
You can’t edit the TXT layout at all, so you get a ’no configurable options’
for that.
For CSV mode, the libLOGREP creates a series of tables - one for each block
which has seen something printed in the output... (e.g. before group/after
group/ page header/on every row)
You can then drag&drop information from the report viewer into these
tables to generate the report layout. Double clicking a cell removes the
contents of that cell..
At the minute you are limited to 10 cells across - this will be changed to
use a spin button like the number of lines...
You can use the ’Default’ menu option to create you a default layout which
you can then play with.
Unfortunately, the layout is indicated by using the block and entry ID for
the printed output - so you’ll see things like "0/1", "1/4" in the layout editor
- if you want to see what they represent, a single click will highlight that
section on the report viewer...

275

18.2. SAVED META DATA CHAPTER 18. LOGICAL REPORTS

You can load a layout using the menu option.. When you’re happy - save
the file using the menu options...

Invocation :

$ layout_engine type filename

Where type is TXT or CSV (more to be added later!) and filename is the
original 4GL report output (just like for the report_viewer)

eg

$ layout_engine CSV /tmp/r1.out

You can’t change the report you’re editing or the type from within the layout
engine. You’ll need to start it again. All load/saves within the layout editor
refer to the layout file - not the meta data report file!!!

An extension .lrf (Logical Report Format) is used when it thinks its re-
quired.

18.2.3 The report processor

This a text mode application which takes a report meta data file and a
report type and renders the report to the required output type with an
optional layout file. This is abstracted behind a shared library just like the
report layout but its called libLOGREPPROC_?.so

If no layout file is supplied then a default one is generated before the report
is processed.

Invocation:

$ process_report type filename or $ process_report type filename
layoutfile

The output is currently stored in a temporary file (the name of which is
displayed when the process completes)

18.2.4 Tips for CSV layouts

Copy to the same block type - the only exception might be for BEFORE
GROUP OF to duplicate these details in an on every row..

276

CHAPTER 18. LOGICAL REPORTS 18.3. HELPER PROGRAMS

18.3 Helper programs

process_report

report_viewer

layout_engine

277

18.3. HELPER PROGRAMS CHAPTER 18. LOGICAL REPORTS

278

Chapter 19

Debugging

Aubit4GL is a live project. It is in pretty constant development, both adding
new features and fixing any issues as they come along. It is important to
understand that while considerable effort has been made to remove any
bugs in the Aubit4GL, as with all code - some will remain. It is therefore
essential that these bugs are reported back in the most efficient manner so
that that can be fixed promptly.

19.1 Coredumps

To find the reason for core dumps, create debuggable files!
If 4glc (or fcompile etc) is core dumping, then recompile the program or
form to have debugging information included. To do this set the CFLAGS
in incl/Makefile-common to have a -g, and recompile the relevant Aubit4GL
application.
If a compiled 4GL application is core dumping, then compile that with -g
(4glpc -g ...) so that we have a debuggable 4gl executable. Next, run
the core-dumping application through gdb, when it dumps core do a bt in
gdb..
4glpc -g hello.4gl

gdb 4glc core

279

19.2. UNEXPECTED BEHAVIOUR CHAPTER 19. DEBUGGING

Now type bt inside gdb - that will give you a backtrace (with any luck).

19.2 Unexpected behaviour

If an application is failing in some way, the best thing to do is to create and
examine (or ask those on the aubit4gl mailing lists to examine) a debug file.

This is created by setting

$ export DEBUG=ALL

You can then run your application and it should generate a file called ’de-
bug.out’. This file can get huge very quickly, though only the last 100 or so
lines will normally be needed to see whats wrong.

You may also find it useful to compile using the -g option and run it through
the gdb debugger.

19.3 All other errors

When a 4GL module or form is compiled, the compiler will generate a .err
file if the compilation is not successful.

19.4 compiler errors

19.5 Reporting bugs

For most cases, the simplest way to report a bug is to generate a test case.
This is the minimal amount of code required to reproduce the bug. This
may entail forms etc which should be included. Once a test case has been
generated, either post it to one of the Aubit4GL mailing lists, or create an
account on the Mantis Bug Tracking system at www.aubit.com/mantis and
enter it there.

280

Chapter 20

Web Services

20.1 4GL Web Tools

Mike Aubury has created the following tools to facilite writing both Web
Servers and Web Clients in 4GL:

• 4glpc -t WRITE somemod.4gl

• fglproto -w somemod

• wsdl2fgl somefile.wsdl

These work with the gSOAP supplied tools (soapcc2 and wsdl2h) to gen-
erate 4GL and/or C programs which when linked to the gSOAP library (via
the -lgsoap option) will handle all the necessary translation to and from
XML of C structures and handle the webservice Remote Procedure Call
(RPC) processes.

Note: If you cannot run soapcc2 and wsdl2h, then the 4GL web tools will
not work. See the install instructions for gSOAP.

Note: If you cannot run the fglproto program, it may not have been
compiled when you installed Aubit4GL. To fix this, you should be able to
compile it in the aubit4glsrc source code distribution/CVS by

281

20.2. WSDL AND SOAP CHAPTER 20. WEB SERVICES

• cd compilers/4glc

• make fglproto

20.1.1 Client

To access a web service from 4GL the short story is:

wdsl2fgl somefile.wsdl # or somefile.h
4glpc -o client.4ae \

<your 4GL files ...>
client.c soapC.c soapClient.c \
-lgsoap

For the longer story read on ...

20.1.2 Server

To create an Aubit4GL program to act as a web service, the short story is

4glpc -t WRITE functions.4gl
4glpc -o functions.o functions.4gl
fglproto -w functions
soapcpp2 -c prototypes.h
4glpc -o server \

soapC.c soapServerLib.c server.c \
functions.o prototypes_server.c \
-lgsoap

Again for the longer story, read on ...

20.2 WSDL and SOAP

WSDL is the WWW proposed standard Web Service Description Language
- an XML format for defining endpoints, services, and data structures for

282

CHAPTER 20. WEB SERVICES 20.3. GSOAP

transmission over the world wide web. A WSDL file is the core file for a
web service program.
SOAP (originally Simple Object Access Protocol) is a WWW standard for
delivery of web services. These 2 standards work together.

20.3 gSOAP

gSOAP is an opensource implementation of SOAP which provides:

• automated SOAP and XML data binding for data structures in C
(using -c option) or C++ (the default)

• automated program code generation and data mapping of both native
and user defined data types. Using gSOAP you can translate to and
from XML without needing to write either conversion code or XML
verification code.

• an optional webserver - or you can deliver the service as a CGI program
- see the gSOAP document in the gsoap/doc subdirectory

gSOAP is a prerequisite for Aubit4GL’s web service programming.
Get gSOAP from
http://www.genivia.com/Products/downloads.html

Select gSOAP toolkit standard from the list of software packages.
For our purposes the important tools provided by gSOAP, in the gsoap/bin
subdirectory, are:

• wsdl2h -c a WSDL/schema importer and data binding mapper tool.
For example the command
wsdl2h -c -o calc.h http://www.genivia.com/calc.wdsl
will output a file: calc.h which translates the WSDL into C language
#define statements

• soapcpp2 -c a stub/skeleton code generator. For example the com-
mand
soapcpp2 -c calc.h
will create for you the following files:

283

http://www.genivia.com/Products/downloads.html

20.4. WSDL2FGL CHAPTER 20. WEB SERVICES

– calcStub.h an annotated copy of the input definitions
– calcH.h declares XML serialiser functions
– calcC.c defines XML serialiser functions
– calcClient.c Client calling stubs
– calcLibClient.c SOAP Client library functions
– calcServer.c Server calling stubs
– calcLibServe.c Server library functions
– a bunch of other .xml and .nsmap files

20.3.1 Warning

gSOAP licenses wsdl2h and the code generated by it for GPL opensource
products, educational use, and non-commercial use. If you wish to exploit it
commercially, consult the licence which comes with the gSOAP download.

20.4 wsdl2fgl

The Aubit4GL tool wsdl2fgl generates 4GL programs and calls the gSOAP
tools to generate the SOAP .c files needed to access web services.

To create a 4GL web client, you can call wsdl2fgl with either a WSDL file
or a gSOAP generated .h file.

wsdl2fgl service.wsdl will run wsdl2h to create the header file service.h
first then run soapcpp2 -c

wsdl2fgl service.h will run soapcpp2 -c (without the need to run gSOAP’s
wsdl2h)

wsdl2fgl will generate a set of files:

• soapClient.c

• soapC.c

• Client_4gl.c

284

CHAPTER 20. WEB SERVICES 20.4. WSDL2FGL

Check the generated file: Client_4gl.c and look for which functions are
available - they will be of the form:
aclfgl___ns2__funcname(...)
where aclfgl_ is the usual prefix that 4GL applies to 4GL function names
to avoid namespace clashes with standard C library calls. Put appropriate
CALL statements into a MAIN ... END MAIN function using the appropri-
ate arguments and link your main module with all the above stuff to create
your 4GL web client. In your 4GL code omit the aclfgl_ prefix that you find
in the Client_4gl.c file. The __ns2__ or __ns3__ or whataver are gSOAP
generated function prefixes similar in spirit to Aubit4GL’s aclfgl_ prefix.

20.4.1 Client Example

For a real world example, download the wsdl file from
http://xmethods.net/ve2/ViewListing.po?key=427560
and save the file as driving.wsdl

Now run the command: wsdl2fgl driving.wsdl

Looking at the file: Client_4gl.c we find:

aclfgl___ns2__getdirections (
// Parameter 1 - fromAddress CHAR(...)
// Parameter 2 - toAddress CHAR(...)
// Parameter 3 - distanceUnit CHAR(...)
// Parameter 4 - expresswayEnabled CHAR(...)

)

aclfgl___ns3__getdirections (
// Parameter 1 - fromAddress CHAR(...)
// Parameter 2 - toAddress CHAR(...)
// Parameter 3 - distanceUnit CHAR(...)
// Parameter 4 - expresswayEnabled CHAR(...)

)

One is calling via service name drivingSOAP, the other via drivingSOAP2.

So, using the first one with applicable parameters we can write a file (say
main.4gl):

285

http://xmethods.net/ve2/ViewListing.po?key=427560

20.4. WSDL2FGL CHAPTER 20. WEB SERVICES

MAIN
DEFINE lv_data char(1024)
CALL __ns2__getdirections(

’1600 Amphitheatre PArkway Mountain View, CA, USA’
’2775 Middlefield Road Palo Alto, CA, USA’,
’miles’,
’true’)

RETURNING lv_data
DISPLAY lv_data CLIPPED

END MAIN

Note: The Client_4gl.c file has a function declaration for
aclfgl__ns2__getdirections()
The Aubit4GL compiler 4glpc prepends the acl4gl_ to all 4GL function
names when translating to C. So we have to omit the the aclfgl_ prefix
from our 4GL CALL statement. Rest assured that the 4glc program will
supply the missing aclfgl_ prefix to access the C function.
(The output gives directions from Google HQ to a Starbucks close by)
Now - to compile it all up :

4glpc -o client.4ae main.4gl \
soapClient.c soapC.c \
Client_4gl.c -lgsoap

20.4.2 Web Server

In order to export a function, a declaration of the function has to be created
and used. This can be done using the fglproto program. First create a
datafile containing your 4gl definition with :

4glpc -t WRITE somemod.4gl

You can do this with multiple 4GL modules. Just run the command for
each 4gl module. At this stage though, you only need to specify modules
which

1. Contain functions you wish to export

286

CHAPTER 20. WEB SERVICES 20.4. WSDL2FGL

2. Contain functions used directly in RETURN statements for functions
you are exporting

You may wish to consolidate the functions into a single module - or create
a wrapper function to call your real functions so you don’t export all of the
functions in a complex 4gl!

Remember - here we are wanting to create stub functions to manage the Web
service. Later we will need the modules containing all the other functions
that are needed to link our application together, but that is not at this stage
...

After you have run 4glpc -t WRITE for each module, we can generate the
stub functions for all non-local functions in our 4gl module. We do this with
fglproto:

fglproto -w somemod

If you have specified more than one 4gl module - add more to that one :

fglproto -w somemod1 somemod2

Remember - here we will create the logic to export all of the functions not
marked as local - you don’t need to use all the modules for the application,
you can omit any that are needed just for linking..

This should generate some files : prototypes_server.c prototypes_client.c
blacklist prototypes.h

(You can ignore blacklist completely). Now, in order to create a server
you need to use soapcpp2 to process our prototypes.h file :

soapcpp2 -c prototypes.h

(We’re using normal C generation so we need to use the -c option to tell
soapcpp2 not to generate C++ code)

That should generate us some more files ;-)

For our server - we will need to use the soapcpp2 generated C files :

287

20.4. WSDL2FGL CHAPTER 20. WEB SERVICES

soapC.c soapServerLib.c prototypes_server.c

You will also need a function to start the server itself - you can use this
basic one as a starting point (see tools/test/gsoap/server.c) :

#include "soapH.h"
/* get the gSOAP-generated definitions */
#include "fglserver.nsmap"
/* get the gSOAP-generated namespace bindings */
#include <math.h>
int aclfgl_run_server(int n)
{ int m, s; /* master and slave sockets */

int port;
struct soap *soap = soap_new();
if (n==0)
{ soap_serve(soap); /* serve as CGI application */
soap_done(soap);
free(soap);
return 0;

}
port=A4GL_pop_int();
printf("Listening on port %d\n",port);
m = soap_bind(soap, NULL, port, 100);
/* bind to the port supplied as command-line arg */
if (m < 0)
{

soap_print_fault(soap, stderr);
exit(-1);

}
fprintf(stderr,
"Socket connection successful: master socket = %d\n",
m);
for (;;)
{

s = soap_accept(soap);
fprintf(stderr,
"Socket connection successful: slave socket = %d\n",
s);
if (s < 0)

288

CHAPTER 20. WEB SERVICES 20.4. WSDL2FGL

{ soap_print_fault(soap, stderr);
exit(1);

}
soap_serve(soap);
soap_end(soap);

}
soap_done(soap);
free(soap);
return 0;

}

You can call this function from within 4gl with something like:

main
call run_server(9090)

end main

Putting it all together ...

Assuming you’ve put

• aclfgl_run_server() function in a file called server.c,

• main .. end main in a file called main.4gl:

4glpc -o server \
soapC.c soapServerLib.c \
server.c functions.o \
prototypes_server.c \
main.4gl
<all your 4gl modules> \
-lgsoap

Eg. if your module containing functions you want to serve is called functions.4gl’
but needs subrouts.4gl to link :

4glpc -t WRITE functions.4gl
fglproto -w functions

289

20.4. WSDL2FGL CHAPTER 20. WEB SERVICES

soapcpp2 -n -c prototypes.h
4glpc -o functions.o functions.4gl
4glpc -o subrouts.o subrouts.4gl
4glpc -g -o server \

soapC.c soapServerLib.c \
server.c \
functions.o subrouts.o \
main.4gl \
prototypes_server.c \
-lgsoap

Now - if you want to create a client to use the webservices for these functions
- its very straightforward.

You simply need to compile your 4gl along with the generated client code
and the gsoap library, and optionally alter the function to include the URL
where they will be served.

4glpc -g -o client.4ae client_4gl \
soapC.c soapClient.c \
prototypes_client.c \
<your 4gls> \
-lgsoap

The functions can have an optional first parameter specifying the URL
where the functions will be served from. This is a default of
http://localhost:9090
if not specified, but the default can be manually changed in the prototypes.h
generated by fglproto -w

eg.

main
call get_tabname(54321)
returning lv_tabname
call get_tabname("http://localhost:9090",54321)
returning lv_tab name
display lv_tabname,":"

end main

290

CHAPTER 20. WEB SERVICES 20.4. WSDL2FGL

This assumes that you have exported a function similar to :

database test1
main

call run_server(9090)
end main
function get_tabname(lv_id)

define lv_tabname char(18)
define lv_id integer
display "lv_id=",lv_id
select tabname into lv_tabname

from systables
where tabid=lv_id

return lv_tabname
end function

See the code in tools/test/gsoap for this example.....

20.4.3 Limitations

20.4.3.1 Single Threaded

All functions are served from what should be thought of as a single threaded
application.

There is every likelihood though that you will not connect back to the
service which you have previously called. No state will be preserved etc.
You should therefore consider function calls to be atomic. For example,
you cannot declare a cursor in one web service call, then read it in another.
That cursor might well not exist when the 2nd call runs.

20.4.3.2 Limited Datatypes

We cannot handle arrays.

291

20.4. WSDL2FGL CHAPTER 20. WEB SERVICES

20.4.3.3 Unsupported Services

If there is a particular web service that you want to use which cannot be
compiled, please pass on the details to:
support@aubit.com

292

support@aubit.com

Chapter 21

Revisions

21.1 2010-8-23

• Revise sections re install and configure

• Moredetail about configuring pg, mysql, sqlite3

• Describe new features: TODO, Web services, XML interface to new
Visual Display apps

• Extensions to INPUT/CONSTRUCT statements: callbacks, etc

• COPYOF and COPYBACK operators

• New PDFReport features (e.g. barcodes)

21.2 2006-8-1

• Further elaboration of builtin functions

• Folded get_info() documention into this manual

• Change of syntax (use . instead of ::) for extended library package
calls

293

21.3. 2005-9-9 CHAPTER 21. REVISIONS

• More info about libraries, especially libchannel

• Put a Quick Reference section into the Language Chapter

21.3 2005-9-9

Just editing changes:

• Fix numerous spelling mistakes

• Fix some infelicities of English expression

• Fix punctuation, syntax, and some grammatical errors

21.4 2005-3-12

Extensive new material from Mike Aubury

• Quick Installation

• Elaboration of combinations of Informix/PostgreSQL with EC/C

• Troubleshooting

• Details of 4glpc and 4glc compiler flags

• Utilities:adbschema, adbaccess, asql, etc

• Extension Libraries: channel, file, etc

• Debugging

• Aubit 4GL GTK GUI development

21.5 2004-4-27

• Chapter 2: further information about PostgreSQL and in particular
the gborg.postgresql.org project

• Chapter 5: include Mike’s documentation on IMPORT PACKAGE
packagename

294

CHAPTER 21. REVISIONS 21.6. 2004-2-22

21.6 2004-2-22

• Some tidying of chapters 1-3

• LYX preamble now sets up PDF properties: pdfinfo, pdfcatalog. You
can navigate with Table of contents (bookmarks) on the left under
Acroread now.

• HTML version now shows section numbering.

21.7 Problems

• Tables bug in latex2html is now fixed (thanks to Ross Moore of MacQuarie
University)

• Stylesheets still not right (latex2html configuration problem?)

295

21.7. PROBLEMS CHAPTER 21. REVISIONS

296

Chapter 22

Environment Variables

The following list of environment variables was derived from the configurator
program’s description file.

There is a great deal of complexity in dealing with different

A4GL_AUTOBANG=YES|NO UI/TUI/MENU
Enable automatic ! for command entry(like dbaccess menus) for
all applicable statements

A4GL_CINT COMPILE/RUNTIME
Full path to CINT C-code interpreter, if installed, othewise ’no’.
Used by 4glc compiler to run C compiled code after compilation.

A4GL_C_COMP COMPILE
Name of the executable of C compiler to use. Note that 4glpc
uses $CC

A4GL_EXE_EXT COMPILE
Extension to use for executable files compiled by Aubit compiler.
Aubit default extensions for compiled resources (forms,menus,help)
and objects as used by Amake and Aubit compiler (see re-
sources.c) Amake does NOT read this file (?-check) note that
composite variables A4GL_FRM_EXT and A4GL_MNU_EXT
exist only in/for Amake defaults:

297

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_MNU_BASE_EXT=.mnu
A4GL_HLP_EXT=.hlp
A4GL_FRM_BASE_EXT=.afr
A4GL_XML_EXT=.xml
A4GL_PACKED_EXT=.dat
A4GL_OBJ_EXT=.ao
A4GL_LIB_EXT=.aox
A4GL_SOB_EXT=.aso
A4GL_SOL_EXT=.asx
A4GL_EXE_EXT=.4ae
To emulate Informix p-code extensions (for instance, to re-use
legacy make files) you would use this settings; note that doing
this is not recomended and that created files will still be in Au-
bit format, not Informix one:
A4GL_MNU_EXT=<no equivalent>
A4GL_HLP_EXT=.iem
A4GL_FRM_BASE_EXT=.frm
A4GL_XML_EXT=”
A4GL_PACKED_EXT=”
A4GL_OBJ_EXT=.4go
A4GL_LIB_EXT=<no (standard) equivalent>
A4GL_SOB_EXT=<no equivalent>
A4GL_SOL_EXT=<no equivalent>
A4GL_EXE_EXT=.4gi

A4GL_FORMTYPE FORMS/RUNTIME
Determine which runtime library to use for reading forms $AU-
BITDIR/lib/libFORM_?.so Default forms driver to be loaded
When used: run-time only
Options: (GENERIC), NOFORM, XDR
Generic implies that format specified with A4GL_PACKER will
be used

A4GL_FRM_BASE_EXT RUNTIME/COMPILE/FORMS
Default form extension (for all packing types)

A4GL_HELPTYPE HELP/RUNTIME
Determine which runtime library to use for displaying help mes-
sages $AUBITDIR/lib/libHELP_?.so

298

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_HLP_EXT HELP/RUNTIME/COMPILE
Specify the default extension for a help file

A4GL_INIFILE COMPILE/RUNTIME
Environment variable optionaly specifiying aubitrc file to use

A4GL_LEXDIALECT ESQL/COMPILE
Determine which ESQL/C dialect to use $AUBITDIR/lib/libESQL_?.so
When A4GL_LEXTYPE=EC, specify type of EC compiler to
be used. Ignored if A4GL_LEXTYPE is not set to EC When
used: compile-time only
Options: (INFORMIX), POSTGRES, SAPDB, QUERIX

A4GL_LEXTYPE COMPILE
Determine what language to convert the 4GL code into $AUB-
ITDIR/lib/libLEX_?.so Default output language driver for 4gl
compiler: When used: compile-time only
Options: (C), PERL, EC, CS
Note CS means C#
Note: EC (Embedded SQL C) can be Informix ESQL/C, SAP
DB pre-compiler, Querix esqlc or PostgreSQL ecpg. Using EC
will limit Aubit DB connectivity at run-time to that of used EC
compiler, ignoring setting of A4GL_SQLTYPE

A4GL_LIB_EXT COMPILE
Extension to use for libraries created by Aubit compiler

A4GL_LINK_LIBS COMPILE
Libraries to link against when producing executables

A4GL_MENUTYPE MENU/COMPILE/RUNTIME
Determine library to use for menuhandlers (not normal 4GL
menus) $AUBITDIR/lib/libMENU_?.so Default menu driver to
be loaded: When used: run-time only
Options: (NOMENU), XDR, GENERIC
Generic implies that format specified with A4GL_PACKER will
be used

A4GL_MNU_BASE_EXT COMPILE/RUNTIME/MENU
Base extension for compiled menu files Base extension (without
packer extension) to use when compiling/opening menu files

299

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_MSGTYPE HELP/RUNTIME
Determine library for help message handling $AUBITDIR/lib/libMSG_?.so
Default help message driver to be loaded: When used: run-time
only
Options: (NATIVE), XML (??? XML? check this!)

A4GL_MV_CMD COMPILE
Command to ise to move files on the file system

A4GL_OBJ_EXT COMPILE extension to use when compiling 4GL mod-
ules to objects

A4GL_OMIT_NO_LOG

A4GL_PACKED_EXT COMPILE/RUNTIME
Determine file extension for packing

A4GL_PACKER MENU/FORMS/HELP/COMPILE/RUNTIME
Determine library for packing forms/menus/help etc $AUBIT-
DIR/lib/libPACKER_?.so You can select which packer to use
Options:(PACKED),XDR, XML, PERL
(PACKED) - default This is very similar to XDR in that data is
written in a hopefully portable way (optionally non-portable if
the required functions aren’t available). This will probably give
the smallest output files
XDR This is the same as doing it the old way
XML This stores and reads the data in an XML file. The reading
is very limited and can basically only read the XML files that
it generates - IT IS NOT A FULL BLOWN XML PARSER.
It uses some odd constructs and isn’t ideal - but you’ll get the
idea when you see the output. Size of created files is much larger
then PACKED or XDR
PERL This generates a data structure which can be used in-
side a perl program - its pretty complicated stuff though using
hashes for the data representation. What you do with it after
you’ve generated it is up to you, because this is an output only
library (ie it can’t read back what its written).

A4GL_PDFTYPE REPORT/RUNTIME
Determine which library to use for extended reports $AUBIT-
DIR/lib/libEXREPORT_?.so Determine default driver for Ex-

300

CHAPTER 22. ENVIRONMENT VARIABLES

tended Reporting When used: run-time only
Options: PDF, (NOPDF)

A4GL_RESERVEWORDS COMPILE –obsolete?– Reserved word hand-
ling Used to determine if traditionaly reserved words in 4GL
language should be treated as reserved Procesing of reserved
word is experimental. Set this to YES, if you want to disable
this functionality. When set to NO, compiler will try to process
most reserved words, instead of reporting the error.

A4GL_RM_CMD COMPILE
Command to use for deleting files on the file system

A4GL_SAPDB_ESQLC ESQL/COMPILE
Full path to SAP DB ESQL/C compiler full path to SAP-DB
ESQL/C pre-compiler executable used when compiling EC out-
put for SAP DB(does not have to be in the path)

A4GL_SQLTYPE SQL/RUNTIME/COMPILE Determine which library
to use to connect to the database $AUBITDIR/libSQL_?.so
Name of default SQL library plug-in to use. When used: run-
time and compile-time
Options: (nosql) , <ODBCMANAGERS> iodbc unixodbc odbc32
(Windows only),
<DIRECT ODBC> ifxodbc, pgodbc, sapodbc, sqliteodbc,
<NATIVE> esql esqpPG esqlSAP esqlQ sqlite sqliteS pg
<SPECIAL> FILESCHEMA
FILESCHEMA is to be used for compiling programs where either
the database doesn’t exist yet - or you can’t get immediate
access to it. This takes the ’database’ as a filename (with a
.schema extension) and uses that to collect the data used by
compiler(s) Warning: this setting is ignored at run-rime when
A4GL_LEXTYPE is set to ’EC’. At compile time, it is used by
compilers regardless of A4GL_LEXTYPE setting

A4GL_UI UI/RUNTIME
Determine which plug-in to use for the user interface $AUBIT-
DIR/lib/libUI_?.so Defines default UI (user intertface) driver
plug-in to load When used: run-time only
Options: (CONSOLE) [no deps.], HL_TUI [curses], GTK [GTK+],
HL_GTK.

301

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_USE_ALIAS_AS=YES|NO

A4GL_XML_EXT COMPILE/RUNTIME
extension to use with XML packer Used when when creating out-
put (forms,menus) or opening resource files using XML packer
Default: SEE ALSO: A4GL_ALWAYSCLOBBER=YES|NO

A4GL_ANSI_ERROR SQL/COMPILE
ANSI SQL 92 error checking mode When ANSI_ERROR is set
to Yes, compiler will abort if non ANSI SQL 92 statement is
found in source code (Static SQL only). If neither A4GL_ANSI_WARN
or A4GL_ANSI_ERROR is set, no checking is performed.

A4GL_ANSI_WARN SQL/COMPILE
ANSI SQL 92 warning checking mode When ANSI_WARN is
set to Yes compiler will display a warning if it encounters static
SQL statement not confitming to ANSI SQL 92 specification If
neither A4GL_ANSI_WARN or A4GL_ANSI_ERROR is set,
no checking is performed.

A4GL_ARR_DIR_MSG UI/TUI Display/Input array message ’There are
no more rows in that direction’

AUBITDIR COMPILE/RUNTIME Specify the location of the aubit source
tree or installation Default for source distribution:/opt/aubit/aubit4glsrc
Default for binary distribution:/opt/aubit4gl Usually set using
–prefix=/path to ’configure’ script

AUBITETC COMPILE/RUNTIME
Location of global Aubit configuration directory This internal
variable points to default location of Aubit config files Default:
/etc/opt/aubit4gl You should not need to change this.

AUBIT_Y2K RUNTIME
Specify Y2K handling of dates:
+n (n<100) - set to nearest year using +n years from today as
limit for future
-n (n>-100) - set to nearest year using -n from today as limit
for past (note: -25 = +75) eg if year=1997 n=20 > 17 will
be taken as historic anything <17 is future n=-20 <77 will be
taken as future >77 is in the past

302

CHAPTER 22. ENVIRONMENT VARIABLES

XX00 - always use century XX
999 - Do not add anything - dealing with AD 0-99
-999 - use current century

A4GL_AUTONULL COMPILE
Auto initializing module and function local variables
=YES|NO
This setting is used at compile-time only. Numeric variables are
initializet to 0, everything else to NULL To turn on, set to ’Y’
(??? or is that YES ???)

A4GL_BACKGROUND UI/TUI
Default background character (in hex) when creating a window
(eg 2E for a ’.’) Application windows background colour xxxx is
a HEX code of a colour attribute - eg 1400 (for 0x1400) for blue
and reverse. Applies to all windows created when no attribute
is specified (including the main screen)

A4GL_CLASSIC_I4GL_MONO UI/TUI
Inhibit mapping of colours to attributes (like red->BOLD)
=YES|NO

A4GL_COLOR_TUI_BKG UI/TUI
specify the default background color

A4GL_COLOR_TUI_BKG_DEF UI/TUI
specify the default background color

A4GL_COLOR_TUI_BLACK UI/TUI
Remap black screen colour to alternative

A4GL_COLOR_TUI_BLUE UI/TUI
Remap blue screen color to alternative

A4GL_COLOR_TUI_CYAN UI/TUI
Remap cyan screen color to alternative

A4GL_COLOR_TUI_FG UI/TUI
specify the default fg color

A4GL_COLOR_TUI_FG_DEF UI/TUI
specify the default fg color

303

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_COLOR_TUI_GREEN UI/TUI
Remap green screen color to alternative

A4GL_COLOR_TUI_MAGENTA UI/TUI
Remap magenta screen color to alternative

A4GL_COLOR_TUI_RED UI/TUI
Remap red screen color to alternative

A4GL_COLOR_TUI_WHITE UI/TUI
Remap white screen color to alternative

A4GL_COLOR_TUI_YELLOW UI/TUI
Remap yellow screen color to alternative

A4GL_COLUMNS UI/TUI
Specify the width of the screen See A4GL_LINES for descrip-
tion

A4GL_COMMENTS COMPILE
Add comments to the generated code

A4GL_COMMENT_LIKE_DISPLAY UI
Specify comments to be in current display color
=YES|NO

A4GL_COMMENT_LIKE_INPUT UI
Specify comments to be in current input color
=YES|NO

A4GL_CONSTANT2DEFINES COMPILE
Print on standard output a #define for all constants
=YES|NO (can be used to generate a .h file)

DBDATE RUNTIME
Specifies how dates will be formated

DBEDIT RUNTIME
Name of the editor to use for TEXT BLOB fields Applies to
asql only?

A4GL_DBPATH RUNTIME/COMPILE
Path to look in for databases and resource files See ’DBPATH’
for more information

304

CHAPTER 22. ENVIRONMENT VARIABLES

DBPATH SQL/HELP/FORMS/MENU/RUNTIME/COMPILE
Path to look in for databases and resource files DBPATH vari-
able containls list of directory(es) that will be searched for ob-
jects like compiled form, help and menu files, and SQLite data-
bases. Use coloumn (:) as a delimiter between paths you want
searched, (;) on Windows. Default: tools/ in Aubit source code
root directory and tools/ in Aubit binaryinstallation directory.
As opposed to most Aubit settings that are exclusive and or-
der of there source (environment, aubitrc, built-in resources)
decides which one will prevail, DBPATH and A4GL_DBPATH
are cumulated from both variables, and added one to another
in order depending on their source. So if you have path 1 in
environment variable A4GL_DBPATH path 2 in environment
variable DBPATH, path 3 in A4GL_DBPATH in aubitrc, path
4 in DBPATH in aubitrc, cumulated value will look like this:
1:2:3:4. Search for the file in DBPATH will then be performed
from left to right, and first path found to contain file looked for
will be used. NOTE: DBPATH to xxx/incl is for adbaccess form
files Only SQLite databases are searched for using DBPATH.
Resources file are:compiled forms/menus/help/p-code files

DBPRINT PRINT/RUNTIME/REPORT
Printing command Name of command to use to pass report out-
put when executing reports defines as START REPORT ... TO
PRINTER

A4GL_DEBUG DEBUG/COMPILE/RUNTIME
Log extensive information for tracing bugs in Aubit4gl code
When you encounter programs that crash, use this for debug-
ging - it will create file debug.out that can be very useful when
you don’t get a core dump, so you don’t have file core to run
gdb on. WARNING: do not set this under normal circumstances
- all programs will create debug.out file when they run, files can
be VERY large, and they will slow down program execution con-
siderably. This setting applies to all Aubit compiler executables
(including all compilers) and to all 4gl programs compiled with
the Aubit compiler.
FIXME: we should have separate settings for compilers and com-
piled programs, like A4GL_DEBUG_COMP and A4GL_DEBUG_PRG
FIXME: add note about priority numbers

305

CHAPTER 22. ENVIRONMENT VARIABLES

Default=<not set>

A4GL_DEBUG_CFG DEBUG

A4GL_DEBUG_DECIMAL DEBUG

A4GL_DEBUG_LEVEL DEBUG/COMPILE/RUNTIME
Specify the detail in which debug messages will be logged

A4GL_DEFPRINTER PRINT

A4GL_DUMPCOMMENTS FORMS/COMPILE
Dump form file attributes when compiling form to stdout

A4GL_DUMPSTRINGS COMPILE
Dump all the strings in a 4GL to a file called strings.out
=YES|NO (normally set to ’ident’) (see TRANSLATEFILE)

A4GL_DUMP_CORE DEBUG/RUNTIME
Action to perform when aubit/4gl programs crash
=YES|NO either print a sorry message (Internal Error...) , or
dump core (seg fault)

A4GL_ERROR_MSG

A4GL_ERRHOOK Name of library file containing function errolog().
Omit the .so suffix. The file must be known to the system vis
LD_LIBRARY_PATH or ldconfig

A4GL_ESQL_UNLOAD ESQL/RUNTIME
=YES|NO

A4GL_EXTENDED_ERRORLOG DEBUG/RUNTIME
Error log handling Add module and line when writing to the
error log from CALL errorlog(..)

A4GL_EXTENDED_GRAPHICS FORMS/UI/TUI
enable the use of extended graphics from form files (+<>^v for
cross and tee’s) If set to Y allows forms to contain the additional
graphics characters <,>,^,v, and + to be used for tee’s and an
intersection.So the following :
\gp--v--q\g
\g| | |\g

306

CHAPTER 22. ENVIRONMENT VARIABLES

\g>--+--<\g
\g| | |\g
\gb--^--d\gWill draw a box with an intersecting horizonal and
vertical line. Note - you’ll need to set this before you compile
the form as well as when you run program that will use form file
compiled this way

A4GL_FAKELEXTYPE PCODE/COMPILE
Compile C code resulting from 4gl compilation to P-code

A4GL_FAKE_IMMEDIATE

A4GL_FIELD_CONSTR_EXPR UI/TUI
Message to display when a fields value cannot be used for a
construct statement

A4GL_FIELD_ERROR_MSG UI/TUI
Message to display when a fields value is invalid (eg non numeric
in numeric field)

A4GL_FIELD_INCL_MSG UI/TUI
Message to display when a value in a field is not in the include
list

A4GL_FIELD_PICTURE_MSG UI/TUI
Message to display when a pressed which is invalid for picture
fields

A4GL_FIELD_REQD_MSG UI/TUI
Message to display when a field requires a value to be entered

A4GL_FIXUPDATE=YES|NO

A4GL_FORMAT_OVERFLOW RUNTIME
Determines what happens when a decimal number is too large
to fit [ROUND,REFORMAT]
=ROUND|REFORMAT

A4GL_GTKGUI UI/RUNTIME GTK+ —obsolete?—

GTKRC UI/RUNTIME GTK+
resources file to use when running in GTK+ GUI mode –probaly
obsolete, GTK libs use this themselves?–

307

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_GTK_INC_PATH UI/COMPILE Path to includes needed ghen
compiling GTK gui enabled code —should be obsolete— Full
path to GTK+ includes (header) files, used when ...? FIXME:
why do we need this?

A4GL_GUIPORT UI/RUNTIME —obsolete?—

A4GL_HIDE_MENU MENU/UI/TUI
Remove menu when finished with it, default is to leave it dis-
played
=YES|NO

A4GL_DIM_INACTIVE_MENU MENU/UI/TUI
Leave menu displayed - but as DIM rather than NORMAL to
show its inactive
=YES|NO

HOME COMPILE/RUNTIME
System environement vatialbe pointing to current user’s home
directory Used to find user-scpecific copy of Aubit configuration
file (aubitrc) if any

A4GL_INCLINES DEBUG/COMPILE
Adds originating line number to genrated source code
=YES|NO Adds originating line number of each created target
language statement coresponding to 4gl source code, to created
target language source code, which is useful for debugging. e.g.:
#line 2 ’../tools/test/test_build.4gl’

INFORMIXDIR ESQL/COMPILE
Location of Informix ESQL/C installation Used when compiling
EC ouptput using Informix ESQL/C compiler

A4GL_INIT_COL_REFRESH UI/TUI
Reinitialise curses colors on exit Used when curses colours must
be reinitialized when returning to Screen mode (terminal spe-
cific)
=YES|NO

A4GL_INPARRAY_FULL_MSG UI/TUI Message to display when input
array becomes full

308

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_KEEP_QUALIFIER=YES|NO

A4GL_KEYFILE DEBUG/UI/RUNTIME
Read keystokes from a file and replay them Mechanism for doing
automated testing A4GL_KEYFILE=(some filename in DBPATH)
SEE ALSO: A4GL_KEYDELAY

A4GL_KEYDELAY DEBUG/UI/RUNTIME
Speed to replay keystokes Mechanism for doing automated test-
ing

A4GL_KEYDELAY=(time in usec 1000000 = 1 second, defaults to 0.1s)
SEE ALSO: A4GL_KEYFILE

A4GL_NEEDALLKEYS DEBUG/UI/RUNTIME
Keyfile handling. Specifies an error if more key stokes are re-
quested than appear in the keystoke file (otherwise -return to
keyboard input) SEE ALSO: A4GL_KEYFILE

A4GL_KEYLOG DEBUG/UI/RUNTIME
Log all keystokes to the specified file

A4GL_LANGUAGE

A4GL_LINES UI/TUI
Number of rows on the screen. Terminal size This should make
programs work with a normal (not xterm) terminal session. De-
faults:
A4GL_COLUMNS=80
A4GL_LINES=24 FIXME: is this really A4GL_ variable - ter-
minal will set LINES/COLUMNS, not A4GL_LINES/A4GL_COLUMNS
SEE ALSO: A4GL_COLUMNS

A4GL_LOGNAME DEBUG/RUNTIME

MAKE

A4GL_MAP4GL=YES|NO

A4GL_MARK_SCOPE

A4GL_MONEY_AS_DECIMAL=YES|NO

A4GL_MONEY_AS_MONEY=YES|NO

309

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_MONO UI/TUI
Force monochrome output
=YES|NO

A4GL_NOCFILE=YES|NO

A4GL_NOCLOBBER=YES|NO

A4GL_NO_INVIS_ATTR UI/TUI
Disable usage of A_INVIS in curses - attempt alternative method
for concealment
=YES|NO

A4GL_PAGER

A4GL_PAUSE_MSG REPORT/RUNTIME
Message to show when executing PAUSE statement in REPORT

A4GL_PGKEYSMOVE UI
Defines the use of the PgUp and PgDn keys as the same as
NEXT KEY or for ON KEY (PGDN)
=YES|NO

POSTGRESDIR ESQL/COMPILE
Base directory of PostgreSQL installation. Used when looking
for includes or libraries to link with, when compiling usign Post-
greSQL ESQL compiler

A4GL_PRINTPROGRESS

A4GL_PRINTSCRFILE DEBUG/UI/TUI
Specify a file to dump screen to (start with a | to pipe to a
command)

A4GL_PRINTSCRKEY DEBUG/UI/TUI
Specify a key to automatically dump the screen with (goes to
PRINTSCRFILE)

A4GL_RPCTYPE RUNTIME
Determine which library to use for remote procedure calls $AU-
BITDIR/lib/libRPC_?.so Determine default RPC (Remote Pro-
cedure Call) driver to load When used: run-time only
Options: SUNRPC, (NORPC), XMLRPC
Note: XMLRPC is client only at the moment

310

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_SCROLLBACKTO1 UI/TUI
Display array handling
=YES|NO

A4GL_SCROLLTOEND UI/TUI
Display array handling
=YES|NO In display array scroll back to first line if PgUp is
used rather than to just first page

A4GL_SIMPLE_GRAPHICS UI/TUI
Force usage of simple graphics for borders
=YES|NO if set to YES then +,|,- will be used to draw graphics
characters instead of proper borders (if available)

A4GL_SQLCNVPATH RUNTIME/SQL
Specifies the location of the conversion details for SQL gram-
mars CONFIG FILE BASED CONVERSIONS convert_sql()
now uses configuration files. These are by default located in
/opt/aubit4gl/etc/convertsql/, but that can be changed with
A4GL_SQLCNVPATH.

A4GL_SQLCONVERT COMPILE/RUNTIME/SQL
Autoconvert SQL from sources files dialect to runtime dialect.
Conversion of SQL statements in 4GL code, to the SQL dialect
of target RDBMS. Conversion is only done if you set A4GL_SQLCONVERT=YES
and only if the dialect used by the program differs from that used
by the DBMS interface.

A4GL_SQLDIALECT COMPILE/RUNTIME/SQL
SQL Dialect used for the source file. Declares the SQL dialect
of SQL code in 4GL source code. an 4GL directive to change
the default SQL dialect at runtime is: SET SQL DIALECT TO
ORACLE by default the system assumes the 4GL application is
using Informix SQL syntax, but this can be changed by setting,
for example:A4GL_SQLEXEC SQL

A4GL_SQLPWD SQL/COMPILE/RUNTIME
Database access password See A4GL_SQLUID for description

A4GL_SQLUID SQL/COMPILE/RUNTIME
Database access user name FIXME: is not odbc.ini supposed to

311

CHAPTER 22. ENVIRONMENT VARIABLES

have default login name and password? Defines username and
password for accessing database server via ODBC: needed for
DATABASE and DEFINE LIKE statements at compile time,
and procedural DATABASE statement ar run-time. You can
use OPEN SESSION and supply login information at run-time,
but NOT at compile time:
Default=<no default value> WARNING!! BE CAREFULL
NOT TO HAVE A TAB OR OTHER SPECIAL CHARACTRS
IN THE VALUE OF THIS VARIABLES !!!!!!!!!!

A4GL_SQL_CURRENT_FUNCTION SQL

A4GL_SYSTEM

A4GL_SYSTEMDIR

A4GL_SYSUSER

A4GL_TEMPDIR

A4GL_TRANSLATEFILE COMPILE
Specifies the location of a translation file. This is used for trans-
forming 4GL strings via a message file (see DUMPSTRINGS)

A4GL_TRANSMODE

A4GL_TRIMDUMP DEBUG/UI/TUI
Trim the results of a dump screen to a specified screen size (eg
24x80) =24x80|25x80|24x132|25x132

A4GL_TRIMUSINGFMT RUNTIME
Trim trailing spaces from a using string variable before applying
it

A4GL_USEPAGEKEYS UI
Does odd processing with PgUp PgDn keys on keyboard

A4GL_USE_BINDING_FOR_PUT SQL
=YES|NO

A4GL_USE_DATABASE_STMT SQL
=YES|NO

312

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_USE_FORM_SIZE FORMS/UI/RUNTIME
Aubit used to honouring the size y by x in the form, this has
been removed. If you require to specify the size, it can still be
used by setting A4GL_USE_FORM_SIZE=Y (using this is an
Aubit extension - and not default informix behaviour!)
=YES|NO

A4GL_USE_INDICATOR ESQL/COMPILE
Use indicator variables in ESQL/C generated code
=YES|NO

VISUAL RUNTIME
Name of the editor for BLOB fields (?)

A4GL_YYDEBUG DEBUG/COMPILE
Aubit parser debugging

A4GL_EXDTYPE RUNTIME
External data types support to be loaded $AUBITDIR/lib/libEXDTYPE_?.so
Currently only MPZ (large integers) are supported FIME: not
sure if this is needed - looks like this is loaded on request: see
example testmpz.4gl into the tools/test directory.

A4GL_NULL_DECIMAL_IF_BAD RUNTIME
Null a decimal value rather than set it to 0 if its invalid
=YES|NO The standard informix behaviour seems to be to set
the value to 0 for decimals but sets dates to NULL. This is
inconsistent and so this default behaviour is switchable via this
configuration setting

A4GL_BEEPONERROR RUNTIME
Indicates that a beep should be emitted by the ERROR state-
ment
=YES|NO

A4GL_FLASHONERROR RUNTIME
Indicates that a screen flash should be emitted by the ERROR
statement
=YES|NO Not all terminals are capable of emitting a screen
flash. If a screen flash is not possible then the terminal bell is
rung instead.

313

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_REFRESH_AFTER_MOVE UI/TUI
Issue a screen update after a cursor movement
=YES|NO This is a screen drawing optimisation function. Nor-
mally a screen update is not required but there may be some
instances where the screen cursor does not move to the right
place if this isn’t set. If you’re not too worried about where
the screen cursor is, or your application doesn’t suffer from this
problem then set this to N

A4GL_FIRSTCOL_ONERR UI/TUI
Move to the beginning of a field after an error
=YES|NO Can only be set if CLR_FIELD_ON_ERROR=N
See CLR_FIELD_ON_ERROR

A4GL_CLR_FIELD_ON_ERROR UI/TUI
Clears a field after an error
=YES|NO If this is set them FIRSTCOL_ONERR will never
be triggered See FIRSTCOL_ONERR

A4GL_NO_REFRESH_AFTER_SYSTEM UI
Issue a screen refresh after any sysem command
=YES|NO In Informix 4GL, the screen is not refreshed after
every system command but only after a new screen instruction
is issued. This means that if you are running a lot of system
commands, Aubit4GL’s screen may appear to flicker between
line mode and screen mode. Set this to N to inhibit the auto-
matic screen refresh.

A4GL_NO_ARRAY_EXPAND COMPILE
Remove the array expansion code
=YES|NO This is solely for backward compatibilty with older
Aubit4GL versions. It should be set to N in all other cases..

RM_COMMENTS_FIRST COMPILE
remove any comments before compiling the 4GL code
=YES|NO This defaults to Yes, if you have problems with com-
pilation - it may be that this code is getting confused. Try
setting to N, or setting DUMP_LAST

GDB_ATTACH RUNTIME Attach GDB
to the process when a Segmentation Fault occurs

314

CHAPTER 22. ENVIRONMENT VARIABLES

=YES|NO This is useful for tracing back problems during runtime
execution The first command to execute in gdb would normally
be a ’bt’ which should give something like :
#0 0x402095a9 in __wait4 () from /lib/libc.so.6
#1 0x40271ad8 in __DTOR_END__ () from /lib/libc.so.6
#2 0x401ad506 in system () from /lib/libc.so.6
#3 0x40038858 in A4GL_core_dump () at fglwrap.c:911
#4 <signal handler called>
#5 0x8048bbd in aclfgl_xxx (_nargs=0) at ./x1.c:95
#6 0x8048a6d in main (argc=1, argv=0xbffff1d4) at ./x1.c:58
#7 0x40180baf in __libc_start_main () from /lib/libc.so.6
Ignore everything up to the <signal handler called>, and ’frame
5’ (in this case) should show the offending line.

A4GL_DUMP_LAST COMPILE
output the results of the last remove comments
=YES|NO This will produce a file ’last’ which contains the file
with the comments removed. This is used to check the operation
of the RM_COMMENTS_FIRST code

22.0.1 Version 1.2

The following environment variables have come into use by Aubit4GL since
version 1.10:

A4GL_CONSTRUCT_NO_MATCHES RUNTIME/SQL/UI
Disable generation of MATCHES keywords
=YES|NO
This setting stops construct from generating a MATCHES when
it sees a [, * or ? You can use this setting if your target SQL does
NOT have the MATCHES keyword.. See also A4GL_CONSTRUCT_LIKE.

A4GL_CONSTRUCT_LIKE RUNTIME/SQL/UI
Enable generation of LIKE for construct
=YES|NO
If set to Yes this allows % and _ to be detected and used to
for a LIKE within a generated construct string. This uses the
same flag (ismatch==1 for MATCHES, ==2 for LIKE) as for
matches. So - If it looks like a matches, matches takes priority

315

CHAPTER 22. ENVIRONMENT VARIABLES

(unless CONSTRUCT_NO_MATCHES IS SET).
Note: This does NOT translate from an entered MATCHES
format string to a LIKE format.

A4GL_DIALOG_OK LANG Text to display on OK button

A4GL_DIALOG_CANCEL LANG Text to display on CANCEL button

A4GL_DIALOG_ABORT LANG Text to display on ABORT button

A4GL_DIALOG_RETRY LANG Text to display on RETRY button

A4GL_DIALOG_IGNORE LANG Text to display on IGNORE button

A4GL_DIALOG_YES LANG Text to display on YES button

A4GL_DIALOG_NO LANG Text to display on NO button

A4GL_DIALOG_ERROR LANG Text to display for ERROR window

TUICANCELKEY TUI Allows the assigning of interrupt key. For example
in aterm’s I set it to 263

A4GL_USE_PANGO_ML UI Allow markup for GUI widgets labels
=YES|NO When set to Yes, any form label can use the pango-
markup-language: (e.g.: DISPLAY ’Blue
BG’ to my_label)

SWAP_SQLCA62 SQL Enable sqlca.sqlerrd[6] (ROWID/OID of last inser-
ted record) translation
=Y|N
This is apparently needed only with PostgreSQL (with IFX com-
patibility patches)

A4GL_SYSCOL_VAL SQL the name of the ’syscolval’ table

A4GL_SYSCOL_ATT SQL the name of the ’syscolatt’ table

A4GL_CLASSPATH COMPILE/RUNTIME Path to search for ’import’
packages

RESTARTLOG RUNTIME Restart the error log
=YES|NO
This causes the CALL startlog(’...’) to restart with an empty
log file each time the program is run. The default is to append
to the end of the current log

316

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_EC_LOGSQL COMPILE Add extra SQL logging information
=YES|NO
This option adds extra code into the generated ESQL/C code
which will call a library function to log SQL calls as they are
made. The actual SQL will be written to a file only if the vari-
able ’LOGSQL’ is set at runtime. See also LOGSQL

COMSPEC COMPILE/RUNTIME On Windows used to determine that
we are on Windows. Not to be changed by user - this is a
Windows system environment variable

CORE_ON_ASSERT RUNTIME/DEBUG Force a core dump when en-
countering an assert. Aubit4GL uses a series of assertions to
check data being used internally. When one of these assertion
fails - it generally indicates something has gone wrong internally.
Setting this option will force a Core dump (Seg Fault) which
should allow any attached debugger to check exactly where the
assertion failed and investigate why it failed.

DATE_AS_ISO_DATE_STRING SQL/ODBC Use character strings for
dates
=YES|NO
This specifies that when communicating with the ODBC driver,
dates should always be refered to as strings. Some ODBC do
not correctly handle dates using the proper ODBC SQL_DATE
datatype - when this situation occurs, specifying DATE_AS_ISO_DATE_STRING
may help

DTIME_AS_CHAR SQL/ODBC Use character strings for datetimes
=YES|NO
This specifies that when communicating with the ODBC driver,
datetimes should always be refered to as strings. Some ODBC
do not correctly handle datetimes using the proper ODBC SQL_C_DATETIME/SQL_TIMESTAMP
etc.W hen this situation occurs, specifying DTIME_AS_CHAR
may help

DUMP4GL DEBUG generates a file /tmp/file.out
=YES|NO
This generates a file /tmp/file.out which gets written to as the
4glc compiler compiles 4GL code. This can be useful in debug-
ging the 4glc compiler

317

CHAPTER 22. ENVIRONMENT VARIABLES

EC_EXT COMPILE Specify the extension for an ESQL/C file
Defaults: Informix=.ec Postgres=.cpc SAP=.cpc

A4GL_INCOMPAT_AT_RUNTIME COMPILE Allow incompatible state-
ments at compile-time, stop at run-time
=YES|NO
When A4GL_INCOMPAT_AT_RUNTIME is set to YES, state-
ments that are not implemented or not possible when using par-
ticular database (when it is known at compile-time) will not
cause compile-time error. Instead, they will compile succes-
fully, and cause the error at run-time. This will allow 4GL
source code using such features to be compiled, but if execution
of it is attempted, program execution will be halted. Default
is to abort with error on compile-time (when target database
is known at compile time, which is tipically only when using
A4GL_LEXTYPE=EC)

INFORMIXOPTIONS UI Use informix case matching for NEXTOPTION/SHOW
OPTION/HIDE OPTION
=YES|NO
This is the default setting for case options. Informix seems to
be case sensitive for NEXT OPTION, but case insensitive for
SHOW OPTION and HIDE OPTION Using this setting will
emulate this behaviour

CASEOPTIONS UI Always use case when matching for NEXTOPTION/SHOW
OPTION/HIDE OPTION
=YES|NO
This setting will ensure a case sensitive match for all the menu
operations This is the default behaviour for NEXT OPTION
under informix, SHOW and HIDE option seem to be case insen-
itive on informix

CASEIGNOPTIONS UI Never use case when matching for NEXT OP-
TION/SHOW OPTION/HIDE OPTION
=YES|NO
This setting will ensure a case insensitive match for all the menu
operations This is the default behaviour for SHOW/HIDE OP-
TION under informix, NEXT OPTION seem to be case sensitive
on informix

318

CHAPTER 22. ENVIRONMENT VARIABLES

EMAIL_RECIPIENT REPORT Email address to use for START REPORT
TO EMAIL
This setting is used to specify a default email address to send
a convertible report to. Emails are sent using send_report()
function in the fgl_smtp module

FGLFRMCOMPILE FORM Explicitly state if a form compile is to use 4GL
rather than PERFORM syntax
=YES|NO
Setting this will enable/disable the use of keywords used only
in the INSTRUCTIONS section of a perform screen which may
otherwise interfere with otherwise legitimate identifiers

FLASH_BADMENUKEY UI Flash the screen when an error occurs in a
menu
=YES|NO
When a key is pressed in a menu which does not correspond to
an option, then this indicates that the screen should flash as a
non-audiable warning. See BEEP_BADMENUKEY

BEEP_BADMENUKEY UI Ring the terminal bell when an error occurs
in a menu
=YES|NO
When a key is pressed in a menu which does not correspond to
an option, then this indicates that the terminal should beep as a
audiable warning.Note : Not all terminals are capable of making
the beep noise. See FLASH_BADMENUKEY

FORCE_CLOSE SQL Force the closing of the current database connection
=YES|NO
This option will force the closing of the database connection
when the program exits

FORCE_ROLLBACK_AT_EXIT SQL Send an explicit rollback work on
closing the connection
=YES|NO
ODBC specific. This option requests that a rollback work be
sent before closing a database connection

FREE_SQL_MEM SQL/COMPILE Free SQL memory when compiling
the 4gl code

319

CHAPTER 22. ENVIRONMENT VARIABLES

=YES|NO
This option should not be required as the 4gl compiler will free
all the memory at the end of compiling a module. If you are
finding you are running out of memory you could try setting
this option.

FUDGE_STATUS COMPILE Add some extra code to clear down the
status variable
=YES|NO
EC/C generation only. This option forces the clearing down of
the status variable.

IFX_LIBS COMPILE Informix libraries to use on the link line This setting
should be automatically set by the configure script If this isn’t
set correctly, it should be set manually to the result of ’esql -libs’

INFORMIX_ROUNDING RUNTIME Specifies which rounding algorithm
to use
=YES|NO
This option specifies using an informix compatible rounding al-
gorithm

LOGALL RUNTIME/UI Log non-printable keys
=YES|NO
This specifies that all key presses should be logged, as opposed
to just the printable characters See KEYLOG and KEYFILE

NAMESPACE COMPILE Namespace to use for compiling programs

NEED_SIGCHLD RUNTIME Add a SIGCHLD event handler
=YES|NO
Some SQL backends (for example some versions of Informix)
raise a SIGCHLD event which must be caught. This option
adds the relevant event handler

NEED_SIGPIPE RUNTIME Add a SIGPIPE handler
=YES|NO
Some SQL backends (for example some versions of Informix)
raise a SIGPIPE event which must be caught. This option adds
the relevant event handler

320

CHAPTER 22. ENVIRONMENT VARIABLES

NO_CONV_ERR RUNTIME Don’t raise an error if a conversion into a
variable fails
=YES|NO

A4GL_DLL_EXT COMPILE Class shared library extention

SO_EXT COMPILE Normal Shared library extention

KEY_RECALL UI Keycode for a recall field key
This option specifies a keycode for a field recall key. This is only
effective for the HL_... series of UI modules

KEY_RECALL_LAST UI Keycode for a recall field key
This option specifies a keycode for a field recall key (last value
only). This is only effective for the HL_... series of UI modules

LIST_ERRS COMPILE Try to allow multiple errors to be reported when
compiling a 4GL module
=YES|NO
Typically the 4gl compiler will stop at the first error. Setting
this option will try to continue the compilation so that multiple
errors in the 4gl module will all be reported

LOGSQL RUNTIME/SQL Filename to log SQL statements to
Some SQL modules will allow for SQL logging at runtime. LOG-
SQL should contain the filename to log these SQL statements
in

RUNNING_TEST COMPILE Internal variable
=0|1
This variable indicates that the compilation/run is part of the
regression thests. This enables code to store errors generated
during regression tests

LOG_TEXT COMPILE Internal variable
This variable should contain a subdirectory and is used to in-
dicate where to store errors generated during regression tests

A4GL_TRACEDLL UNKNOWN UNKNOWN
=YES|NO
Trace DLL calls. Calls will be written to a file called /tmp/trace.txt

321

CHAPTER 22. ENVIRONMENT VARIABLES

PREFIX_DLLFUNCTION RUNTIME Add an underscore when calling a
DLL function
=YES|NO
Some platforms require that functions in a DLL are prefixed
with an underscore This option ensure that all functions are
called with the expected name

ODDOPTIONS UI Reset options when opening a new window
=YES|NO
For some bizarre reason, Informix resets the options display at-
tribute when you open a new window. This option is used for
compatibility

ONKEY_ACCEPT UI Apply different logic for ON KEY (ACCEPT)
=YES|NO
Traditional key handling Assume F1 is the Accept Key... The
normal truth table would be :
ON KEY (f1) ON KEY (ACCEPT) Press Key FGL_LASTKEY
ACTION
N N F1 F1 Exit Display *
Y N F1 F1 Do ON KEY(f1) *
N Y F1 N/A Exit Display *
Y Y F1 F1 Do ON KEY(f1) *
ie - ON KEY(ACCEPT) is completely ignored
Setting ONKEY_ACCEPT=Y changes this :
ON KEY (f1) ON KEY (ACCEPT) Press Key FGL_LASTKEY
ACTION
N N F1 F1 Exit Display
Y N F1 F1 Do ON KEY(f1)
N Y F1 ACCEPT Do ON KEY (ACCEPT)
Y Y F1 F1 Do ON KEY(f1)

SHELL UNKNOWN UNKNOWN

SPACESCORE FCOMPILE Convert underscores to spaces when compiling
a form
=YES|NO
This option changes any ’_’ characters to spaces when compiling
a form

322

CHAPTER 22. ENVIRONMENT VARIABLES

START_ALLOC RUNTIME Performance enhancement
=YES|NO
This option allocates and then frees 10Mb of memory when the
program starts. This normally means that subsequent memory
allocations will run much faster.

TRACE_AS_TEXT REPORT Enable XML style text logging of convert-
ible reports
=YES|NO
This options makes the convertible reports write their meta data
in an XML style output file

WAIT_FOR_GDB_ATTACH RUNTIME Wait for a debugger to connect
to this process on SegFault
=YES|NO
When a program segfaults it can do one of three things.
1) Die (possibly with a core dump)
2) Start the debugger
3) Wait for a debugger on another terminal to connect to this
process
This option specifies that we should wait (for up to 5 minutes)
for a ’gdb -p pid’ to failed process

DBL2DEC_USING RUNTIME Use a USING string to convert a double
to a decimal
=YES|NO
This uses a USING string as the basis for converting from a
double to decimal

DEBUGFILE RUNTIME debug filename Specifies the debug filename to
use (normally debug.out)

LOCALOUTPUT COMPILE strips any leading directories while compil-
ing
=YES|NO
This option specifies that any leading directories are removed
when compiling modules. This means that compiling direct-
ory/module.4gl may (for example) generate module.c in the cur-
rent directory rather than directory/module.c

LOGREP REPORTS Internal logical reports variable This is used intern-
ally - do not set it manually

323

CHAPTER 22. ENVIRONMENT VARIABLES

LOGSQLFUNCTIONS COMPILE Save used stored procedure names
=YES|NO
This option will create a file called "/tmp/sqlcall.log" which
should contain all the SQL functions (stored procedures) which
are called from the module being compiled. These can be col-
lected to determine what functions/procedures might need port-
ing/copying when moving to a new database/rdbms.

LOG_STRINGS UNKNOWN UNKNOWN
=YES|NO
This will log all of the literal strings encountered in the source-
code in a file called /tmp/strings.log

NEVER_CONVERT UNKNOWN UNKNOWN
=YES|NO

ALWAYS_CONVERT UNKNOWN UNKNOWN
=YES|NO

IGNORE_DATEFMT UNKNOWN UNKNOWN
=YES|NO

MAPSQL UNKNOWN UNKNOWN

MONITORPORT UI Specify the TCP/IP port for monitoring You will
need to edit lib/libaubit4gl/fglwrap.c and add
#define USE_MONITOR to use this functionality

MONITOR4GL TUI Writes to a ’monitor’ TCP/IP connection the current
screen
=YES|NO
This option will log the current screen to. You can use ’telnet
host $MONITORPORT’ to view the output. You will need to
edit lib/libaubit4gl/fglwrap.c and add
#define USE_MONITOR to use this functionality See also MON-
ITORPORT

NOSETODBCCURSORS ODBC Use ODBC driver manager cursors
=YES|NO
If this is set to Y then the odbc sql connector will use the driver
manager cursorlibrary if available. This is done using the fol-
lowing ODBC call :

324

CHAPTER 22. ENVIRONMENT VARIABLES

SQLSetConnectAttr (hdbc, SQL_ATTR_ODBC_CURSORS,
(SQLPOINTER) SQL_CUR_USE_ODBC, (SQLINTEGER) 0);

NO_INIT_COL_CLR TUI/HL_TUI Inhibit the clear screen on a refresh
from linemode
=YES|NO

LOGPCODE PCODE log debugging information to a file called pcode.run
=YES|NO
This is read directly from the environment and so can’t be set
in an aubitrc file

PADNULLSTRING RUNTIME sting concatenation behaviour
=YES|NO
This option changes the way a string concatenation would work
if one or other of the strings is null.

PG_COPTS COMPILE Postgres C compiler flags

SAVE_COMMENTS COMPILE Filename to save comments to
=YES|NO
This option specifies the filename to save any comments en-
countered in the sourcecode to. These comments can then be
more easily analysed.

AUBITPLUGINDIR COMPILE/RUNTIME Specifies the directory where
plugins reside This is typically $AUBITDIR/plugins-version

INPUTREQUIREDTYPE TUI sets the REQUIRED method for an IN-
PUT
=FIELD|INPUT
This specifies when the REQUIRED tag on a field on an input
is checked.

CLRFIELDSTATUS TUI Clear ’field touched’ after the BEFORE INPUT
=YES|NO
In certain versions of Informix4GL it appears that field status
flags are cleared *AFTER* a BEFORE INPUT/BEFORE CON-
STRUCT. This means that any DISPLAYsdone during the BE-
FORE INPUT or BEFORE CONSTRUCT do not set the field_touched
flags for the fields. Setting this flag emulates this behaviour..

325

CHAPTER 22. ENVIRONMENT VARIABLES

A4GL_FRM_BASE_LIST RUNTIME Specify a list of extensions which
may be used for a formname If set - this is a colon separated list
of file extensions which may be used when opening form files. If
not set, then the standard FRM_BASE_EXT will be used

SETODBCCURSORS UNKNOWN UNKNOWN

SUPPRESSWARNINGS UNKNOWN UNKNOWN

TARGET_OS UNKNOWN UNKNOWN

TRIMFIELD UNKNOWN UNKNOWN

USECURSORFORLOAD UNKNOWN UNKNOWN

A4GL_LOGSQLERR UNKNOWN UNKNOWN

A4GL_PARSER UNKNOWN UNKNOWN

A4GL_QUOTE_OWNER UNKNOWN UNKNOWN

A4GL_RDYNAMIC UNKNOWN UNKNOWN

A4GL_NUMERIC UNKNOWN UNKNOWN

A4GL_DB_NUMERIC UNKNOWN UNKNOWN

A4GL_SCANF_NUMERIC UNKNOWN UNKNOWN

ALWAYS_CONVERT_PREPARED UNKNOWN UNKNOWN

ASQLERRM UNKNOWN UNKNOWN

CONSTRUCT_MATCH_FIX UNKNOWN UNKNOWN

DBNAME UNKNOWN UNKNOWN

DOING_CM UNKNOWN UNKNOWN

DROP_WHERE_CURRENT_OF UNKNOWN UNKNOWN

ENV_NOT_SET_AS_STR UNKNOWN UNKNOWN

ERROR_ON_NVALS UNKNOWN UNKNOWN

FCOMPILE_SILENT UNKNOWN UNKNOWN

326

CHAPTER 22. ENVIRONMENT VARIABLES

HALFDELAY UNKNOWN UNKNOWN

HASHNOCOMMENT UNKNOWN UNKNOWN

HIDEEMPTYBUTTONS UNKNOWN UNKNOWN

KEEPNLONREAD UNKNOWN UNKNOWN

BINDDATEASINT UNKNOWN UNKNOWN

SINGLEFORM FCOMPILE Use ’single form mode’ when compiling
=YES|NO
This option emulates the behaviour of Informix4GL in just over-
laying multiple screens over each other. (Normally Aubit4GL
will put separate screens on separate screens!) This is needed
to emulate a "feature" of Informix4GL which allows displaying
of data to fields on the second screen to overwrite the screen
displayed for the first (to blank out fields for example)

A4GL_NULLBADARGVAL RUNTIME Returns NULL instead of ’ ’ from
ARG_VAL This option returns NULL when ARG_VAL is called
with an invalid parameter

C4GLFUNCRETCOMPAT COMPILE Sets the compiler to ignore any sur-
pluss return values
=YES|NO
The (some versions of the) Informix c4gl silently discards extra
return values. Setting this will emulate that behaviour

ESQLDESCRIPTORLENGTH ESQL/RUNTIME Sets the maximum length
of the ESQL descriptors for the Informix connector This sets
the maximum length (normally 128) of the informix descriptor
strings. These are used internally for prepares and cursors etc.
Some versions of the Informix ClientSDK have a smaller size for
the descriptor and this setting can be changed accordingly

327

CHAPTER 22. ENVIRONMENT VARIABLES

328

Chapter 23

This Manual

This manual was produced using LYX and LATEX, both of which come out
of the box with Linux distributions. The sourcefile for the manual is the
file: a4glman.lyx

The document is typeset to be printed on A5 paper so that the resulting
bound volume fits easily on normal bookcase shelves. If you want to change
this to A4 then in LYX do the following: Document -> settings -> Page
Layout and replace A5 with A4.

23.1 LYX

LYX is a GUI frontend to the LATEX typesetting software which allows you to
produce professional-quality typesetting without the need to learn the TEX
language, or to know the rules of professional quality typesetting. Please
note that, when properly typeset, the inner margins should each be about
half the size of the outer margins so that when the book is opened out to
lie flat, the margin whitespace between text blocks should appear equal.

LYX documents are text files and can therefore also be edited manually with
standard editors such as vi(m), (x)emacs, etc. They are compact (about 3
kilobytes per printed page). Typically the PDF version of a LYX file will be
twice that size. LYX files are converted into the TEX language (also text)

329

23.2. TEX CHAPTER 23. THIS MANUAL

and then compiled by the program: latex into a device independent .dvi
format (binary) which various converters can render into .ps (Postscript),
.pdf (Portable Document Format), .html (HyperText Markup Language),
.odt (Open Document Format), plain text using common opensource utility
programs, and several other formats which require 3rd party software.

23.2 TEX

The TEX typesetting application is the result of nearly 20 years of work
by Donald Knuth, Professor Emeritus of Stanford University who put it
into the public domain. Knuth is the author of the famous quintet of books
entitled The Art of Computer Programming which has been the staple
text of university computer science courses for over 20 years. Knuth derived
the name TEX from the Greek word (techne) which means both art and skill.

In Greek: τεχνη

It is pronounced tek but as Knuth says: if you say it aloud, the computer
screen should become moist. (The Greek letter X (chi) sounds a bit like
the ch in loch). Knuth wrote TEX because he was concerned at the poor
quality of the typesetting of the early editions of his own books and at the
expense of getting it done correctly. The stated aim of TEX is to produce
beautiful books.

23.3 LATEX

LATEX is a set of TEX macros created by Leslie Lamport.

LYX is a document processor rather than a word processor. It relies on the
typesetting features of LATEX. Using LYX you concentrate on the content
and trust LATEX to look after the presentation.

LATEX provides the following document processing benefits which are not
available in word processors:

• Consistent sizing and spacing and layout of headers for chapters, sec-
tions, subsections, etc.

330

CHAPTER 23. THIS MANUAL 23.4. PDF AND HTML

• Appropriate kerning of characters (squeezing or spreading of adjacent
fat and thin letters)

• Ligatures (special glyphs) for letter combinations such as ff, fl, fi, etc.

• Automatic elimination of widows and orphans

• Treating pages and paragraphs (rather than lines) as units for type-
setting

• Correct pagination: Odd pages on the right, Chapters starting on odd
pages, etc.

23.4 PDF and HTML

23.4.1 PDF

To produce a PDF version of this manual, use the LYX File Menu option:
File -> Export -> PDF(pdflatex)
This will provide Table of Contents navigation and will embed the Latin
Modern Fonts and the 4 or so images into the output file. The other PDF
export options (dvipdfm and ps2pdf) will not work correctly.

Alternatively you can do the export to PDF from the command line:
lyx -e pdf2 a4glman.lyx

It is important to use Latin Modern as the font for PDF. Latin Modern is
a scalable vector font which works well on screen as well as on the printed
page. LATEX’s default bitmap fonts are bungled by the Adobe Acrobat PDF
reader program.

In order to get URLs properly typeset, similarly use the hyperref TEX pack-
age.

In order to activate PDF navigation, you need to conditionally execute the
TEX \pdfcatalog statement within a TEX \ifpdf ... \fi clause.

Here is the LATEX source included in the LYX preamble:

\usepackage{hyperref}
\usepackage{ifpdf}

331

23.4. PDF AND HTML CHAPTER 23. THIS MANUAL

\ifpdf
\usepackage{lmodern}
\pdfinfo{ /Title (Aubit4GL Manual)

/Subject(Aubit 4GL Programming)
/Author(John O’Gorman) }
\pdfcatalog{/PageMode(/UseOutlines)}

\fi

The somewhat puzzling discrepancy in the syntax above with regard to
slashes is because

• the backslashed keywords are in the TEX language

• the forwardslashed keywords are embedded PDF language (within the
TEX \pdfinfo macro)

23.4.2 HTML

To convert LYX/LATEX documents into HTML format, we use the program
latex2html. With some versions of latex2html the following adaptation may
be needed to render tables correctly:

}
push (@pieces, $after);
+ $within_preamble=0
}
print "$replacements new-command"

In the above the + line is to be added (without the +). The rest is context
which allows you to locate where to insert the $within_preamble=0 state-
ment. As is evident, latex2html is a perl script (usually found in /usr/bin).
If it is missing from your distribution, install it from the openSUSE DVD
or failing that from a TEX CTAN.
To produce the HTML files from within LYX, take the following steps:

1. Create a slightly cut down version of the primary document: a4glman.lyx
by stripping a few things from the LYX file: the preamble and Greek
characters. The cut down version is: a4glmanhtml.lyx

332

CHAPTER 23. THIS MANUAL 23.4. PDF AND HTML

2. Export a4glmanhtml to TEX format

3. Convert the TEX format to HTML using latex2html

23.4.2.1 Export LYX to TEX

Use the LYX File menu option:
File -> export -> LATEX(pdflatex)
This will produce a file: a4glmanhtml.tex
You can also produce a tex file from the command line:

lyx -e latex a4glmanhtml.lyx

Remove the \ifpdf statement from the preamble:

sed -i ’/^\usepackage{ifpdf}/,/^\fi/d’ a4glman.tex

This last step is necessary because latex2html cannot cope with the \ifpdf
statement.
In fact, we have chosen to remove the whole preamble (which is user-entered
to add PDF functionality) and remove the code which produces Greek char-
acters using the following sed commands:

sed -e ’/\\begin_preamble/,/\\end_preamble/d’ \
-e ’/In Greek:/,/\\end_inset/d’ \
a4glman.lyx > a4glmanhtml.lyx

23.4.2.2 Convert TEX to HTML

From the command line:

latex2html -split 3 \
-link 4 \
-local_icons \
-show_section_numbers \
-html_version 4.0 \
a4glman.tex

333

23.4. PDF AND HTML CHAPTER 23. THIS MANUAL

The split 3 option will cause latex2html to split the document into separ-
ate html pages for each subsection and higher partitions (sections, chapters).

The link 4 option will render a table of contents with navigation links for
each subsubsection and higher partitions (subsections, sections, chapters).

The result of the above command will be the creation of a directory: a4glmanhtml
which will be populated with HTML files including an index.html file - all
linked appropriately with <a> tags.

Of course, when you convert to HTML, you lose all the special TEX type-
setting features and rely on the standard CSS stylesheets to lay out the
document. These you can edit to improve the presentation of the HTML.

The latex2html command above creates set of html files in the directory:
a4glmanhml and the directory contains many dozens of files with names:
index.html node1.html node2.html ... node159.html

23.4.3 Makefile

To help automate the above translation processes, we have a Makefile:

L2H=latex2html
L2HARGS=-split +3 -link 4 -local_icons -show_section_numbers\

-html_version 4.0
all: a4glman.tex a4glman.pdf a4glmanhtml \

tarball htmltarball
clean:

rm *.log
srcclean:

rm *.pdf *.tex *.aux *.log
a4glmanhtml.lyx:a4glman.lyx

sed -e ’/\\begin_preamble/,/\\end_preamble/d’ \
-e ’/^In Greek:/,/\\end_inset/d’ \
a4glman.lyx > a4glmanhtml.lyx

a4glmanhtml.tex:a4glmanhtml.lyx
lyx -e latex a4glmanhtml.lyx

a4glmanhtml: a4glmanhtml.tex

334

CHAPTER 23. THIS MANUAL 23.4. PDF AND HTML

${L2H} ${L2HARGS} a4glmanhtml.tex
a4glman.pdf:a4glman.lyx

lyx -e pdf2 a4glman.lyx
htmltarball:

tar cvfz ../a4glmanhtml.tar.gz a4glmanhtml
tarball:

tar cvfz ../a4glman.tar.gz .

Be aware that the indented lines above MUST have tabs (not spaces). Oth-
erwise make will not work!

335

Index

BARCODE, 255
Barcode, 257, 260
barcode, 225

PostgreS, 144, 145
Postgres, 146

336

INDEX INDEX

Finis

337

	Features
	4GL:
	Aubit 4GL
	Aubit4GL Benefits
	GNU, GPL, OpenSource
	Commercial Support
	Productive
	Fast
	Compatible
	Engine Independent

	Aubit4GL Extensions
	What's New

	Install
	Platforms
	Choices
	GTK
	PDFLib
	Which
	Whither

	But first
	Binary
	Source

	Download
	Filenames
	Tarballs
	CVS

	Build
	configure
	Binary
	Source
	Missing Software

	Connect
	AUBITDIR
	PATH
	ldconfig

	aubitrc
	Binary
	Source
	Plugins
	Informix
	PostgreSQL
	MySQL
	SQLite3
	Others

	A4GL_SQLACL

	DECIMAL format
	Remote connection to pg8:
	Check
	Commands
	Try to compile a simple 4gl hello
	With database
	Test Programs
	For Informix
	Cient SDK
	Check the SDK
	Set Up Aubit
	Try to compile a simple 4gl
	Try to run it

	Set up
	ODBC
	ODBC config files
	Sample odbcinst.ini
	ODBC Datasources
	Informix ODBC Drivers
	Informix Driver Manager

	PostgreSQL Drivers
	SAPDB Drivers
	ODBC Warning
	Native

	Databases
	Informix
	PostgreSQL
	Overview
	Documentation
	Installation
	Instances
	initdb
	pg_ctl start
	pg_ctl stop
	createdb

	Environment
	Maintenance
	vacuumdb
	pg_dump

	Commands
	psql
	Stored Procedures
	PL/pgSQL matches function
	$$ quoting
	E escaping
	PL/pgSQL install

	MySQL
	SQLite3
	SQLServer

	Problems
	Curses
	Wide Characters
	Encodings
	LENGTH

	Engines

	Modules
	Choices

	Aubit4GL Compilers
	A4GL compilers
	4glpc
	Usage

	4glc
	Compiling forms
	Compiling help files
	Compiling menu files

	4GL Language
	Introduction
	Summary:
	Short Intro to x4GL
	4GL Programs
	Structure of a program
	DATABASE section
	GLOBALS section
	Functions
	MAIN block
	DEFINE section
	Arrays Syntax:
	Records
	Syntax

	Associative Arrays
	Performance Note

	Constants
	DEFINE NEW TYPE
	Packages

	Quick Reference
	Data Types
	Constants
	Global Variables
	Syntax Conventions
	Operators
	Aubit4GL Operators
	Attribute Constants
	Key Constants
	Table Privileges
	Comments
	4GL Statement Syntax
	Report Syntax
	Report Statement Syntax
	Report Expressions
	PDF Report Syntax
	PDF Report Expressions
	PDF Statements
	PDF_FUNCTION arglists

	Builtin Functions
	Standard 4GL Builtin Functions
	Standard 4GL Operators
	D4GL Builtin Functions
	Aubit Builtin Functions
	a4gl_get_info()
	Connection
	Form
	Statement
	Window

	aclfgl_ Builtins
	Procedures
	Functions

	Form Syntax
	Tag Description
	Aubit 4GL GUI Attributes

	VDC Forms
	Callbacks

	Help system
	Help message source file
	Compiling help files
	help in programs
	Within 4GL
	At runtime

	Decompiling
	Compatibility
	mkmess

	SQL Conversion
	Source SQL dialect
	Target SQL dialect
	Configuration files
	Converting SQL
	Conversion Syntax
	Simple directives
	Complex Directives
	REPLACE directives

	Make
	GNU make
	Makefiles
	Include File
	Make glossary:
	Makefile Example

	Pattern Rules
	Make variables
	GPATH and VPATH
	.PHONY
	Implicit rules
	Syntax
	Debugging make

	amake
	Introduction
	Summary
	Converting old makefiles
	prepmake
	example
	amakeallo
	amakeallf

	2. amake
	Requests
	Notes
	Installation
	Credits:
	#DEFINE
	4GL Makefiles
	Makefiles for Classic 4GL on Unix

	D4GL Makefiles on Unix
	I4GL Makefiles on Unix
	NMAKE

	Bug in ESQL/C rules:

	A4GL Utilities
	adbschema
	afinderr
	asql
	runforms

	aupscol
	P-Code Dropped
	configurator
	convertsql
	default_frm
	fcompile
	Builtin Forms

	fshow
	loadmap
	mkpackage
	prepmake
	decompilers
	Internal Apps
	xgen

	Packages
	Packages
	channel
	Dependencies
	Synopsis

	file
	Dependencies
	Synopsis

	html
	Dependencies
	Synopsis
	Example

	memcached
	Dependencies
	Synopsis

	pcre
	Dependancies
	Synopsis

	pop
	Dependancies
	Synopsis

	smtp
	Dependancies
	Synopsis

	string
	Dependencies
	Synopsis

	sxml
	Dependencies
	Synopsis

	dynamic
	Dependencies
	Function list

	Extensions
	Fake Comments {! ... !}
	Associative Arrays
	Paused Screen Handling
	Slices
	TODO statement
	ODBC Data access
	Concurrent Connections
	Constants
	Callback Functions
	CONSTRUCT VIA
	VIA Example

	SORT ... USING sortfunc
	Example code
	Example 2

	LOAD ... USING FILTER fname ...

	Error Hooks
	A4GL_ERRHOOK
	errlog()
	Example
	sample.4gl

	Map Files
	New Types
	Variable IDs
	Passing IDs
	Embedded C code.
	MOVE WINDOW
	WHENEVER
	Multilevel Menus
	Extended DISPLAY
	Extended USING
	Local functions
	get_info function
	a4gl_get_info()
	get_error_details()
	Dynamic Form Fields
	Remote Functions
	LINKED TO
	ON ANY KEY etc
	Compile Time Environment
	SCHEMA v DATABASE
	SESSIONS
	Application Partitioning
	Y2K Runtime Translation
	Globbing
	A4GL Wizard
	Program Templates

	PDF Reports
	GUI
	Packages
	a4gl IDE
	Independent Development Environment

	Logical Reports

	ACE reports
	generate_aace
	aace
	aace_4gl
	-C Compatibility
	-I Insert Cursor
	-B Batch Size

	New Display Clients
	New GUI Front Ends
	History
	TUI
	GTK
	HL_TUI, HL_GTK
	Graphical Front Ends

	VDC
	Requirements
	Ventas Display Client
	Linux
	Source
	Binary

	Windows
	Source
	Binary

	Proxy
	Authentication

	Form Layouts
	SCREEN
	LAYOUT
	GRID
	TABLE
	HBOX, VBOX
	FOLDER
	Container Syntax

	Field Widgets
	Widget Syntax

	Settings/Environment Variables
	Debugging

	Special functions
	Ventas GUI Client
	Startup

	Look & Feel
	Toolbars
	Images
	Application Launcher
	STYLES
	Attributes
	Modifiers
	Actions
	Attributes

	SSH client mode

	Other GUI clients
	Protocol
	Testing
	DTDs

	PDF Reports
	Before you start
	Introduction
	Output Section
	Fonts
	Report Structure
	Extras
	Positioning
	Images

	Example program

	Barcodes
	Barcodes 128
	Tilde Method
	Type 128B

	Printing
	PDF
	ASCII, ISO8895, etc
	CUPS
	Print Queue Set Up
	cpi and lpi
	CUPS Documentation

	Print Queue Problems
	a2ps

	Logical Reports
	Invoking a logical report
	FINISHing the report
	Converting to "filename"
	Default layouts
	Converting to many

	Saved Meta Data
	The Report Viewer
	The layout editor
	The report processor
	Tips for CSV layouts

	Helper programs

	Debugging
	Coredumps
	Unexpected behaviour
	All other errors
	compiler errors
	Reporting bugs

	Web Services
	4GL Web Tools
	Client
	Server

	WSDL and SOAP
	gSOAP
	Warning

	wsdl2fgl
	Client Example
	Web Server
	Limitations
	Single Threaded
	Limited Datatypes
	Unsupported Services

	Revisions
	2010-8-23
	2006-8-1
	2005-9-9
	2005-3-12
	2004-4-27
	2004-2-22
	Problems

	Environment Variables
	Version 1.2

	This Manual
	L.25emYX
	TeX
	LaTeX
	PDF and HTML
	PDF
	HTML
	Export L.25emYX to TeX
	Convert TeX to HTML

	Makefile

